On the use of prior information for flexibly monitoring group sequential survival trials

Presented October 16, 2009

Dan Gillen Department of Statistics University of California, Irvine

Joint work with Sean Brummel, Dept of Statistics

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Group sequential testing in clinical trials

- Analyze the data at periodic intervals
- Test times defined on 'information' scale
- Study is stopped as soon as confidence in favor of a decision is reached
 - P-value
 - Predictive probability of final statistic
 - Stochastic curtailment
 - Bayesian posterior probabilities
- Multiple testing of data using fixed sample critical values results in an inflated type I error

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summarv

Operating characteristics to consider at the design stage

- 1. Efficiency of designs
 - Power at various alternatives
 - Average sample number (ASN) / stopping probabilities
- 2. Point estimates of treatment effect corresponding to boundary decisions in favor of
 - Efficacy Futility Harm
- 3. Frequentist and Bayesian inference on the boundaries
- 4. Conditional futility/reversal of decision corresponding to boundary decisions

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summarv

Operating characteristics condition upon exact timing

- During the conduct of a study statistical information from a sampling unit may be different than originally estimated
 - Variance of measurements
 - Baseline event rates (binary outcomes)
 - Censoring and survival distributions (weighted survival statistics)
- Consequences of monitoring under incorrect estimates of statistical information can include
 - 1. Change in nominal type I error rate from originally planned design
 - 2. Change in power from originally planned design
 - 3. Change in ASN from originally planned design

UCIrvine University of California, Irving

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Monitoring group sequential trials

Popular methods for flexible implementation of group sequential boundaries

- 1. Christmas tree approximation for triangular tests: Whitehead and Stratton (1983)
- 2. Error spending functions: Lan and DeMets (1983); Pampallona, Tsiatis, and Kim (1995)
- Constrained boundaries in unified design family: Emerson (2000); Burrington & Emerson (2003)

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Monitoring group sequential trials

Use of constrained boundaries in flexible implementation of stopping rules

- 1. At design stage, choose a parametric stopping rule:
 - Ex. Unified family (Emerson & Kittelson, 1999) \rightarrow point estimate (MLE)

$$egin{aligned} & \hat{ heta}_j < extbf{a}_j = \left(extbf{A}_a + \prod_j^{P_a} \left(1 - \prod_j
ight)^{R_a}
ight) extbf{G}_a & ext{(lower)} \ & \hat{ heta}_j > extbf{d}_j = \left(extbf{A}_d + \prod_j^{P_d} \left(1 - \prod_j
ight)^{R_d}
ight) extbf{G}_d & ext{(upper)} \end{aligned}$$

Notes:

- Taking P = 0.5, A = 0, R = 0 yields a Pocock (1977) design
- Taking P = 1, A = 0, R = 0 yields a O'Brien-Fleming (1979) design

UCIrvine University of California, Irving

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summarv

Monitoring group sequential trials

Use of constrained boundaries in flexible implementation of stopping rules

- 2. At the first analysis, compute stopping boundary (on some scale) from parametric family
- At successive analyses, use parametric family with constraints (on some scale) for the previously conducted interim analyses

Notes:

- Maximal sample size estimates may be updated to maintain power
- ► Works great as long as we know (or have a good estimate of) ∏_i!

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Further considerations when considering survival endpoints

- Common to use the logrank statistic for testing survival differences
 - Locally efficient for proportional hazards alternatives
- In this case, translation between sample size and statistical information is trivial
 - Information is proportional to the number of observed events

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Motivating Example: Phase II prostate cancer data

Simulated from actual trial data

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Weighted LR statistics

$G^{\rho,\gamma}$ statistic (Fleming & Harrington, 1991)

- When a non-proportional hazards treatment effect is hypothesized some have suggested the use of weighted logrank statistics
 - Potential for increased power by up-weighting areas of survival where largest (most clinically relevant?) effects are hypothesized to occur
- G^{ρ,γ} family of weighted logrank statistics

$$G^{\rho,\gamma} = \left(\frac{M_1 + M_0}{M_1 M_0}\right)^{1/2} \int_0^\infty w(t) \left\{\frac{Y_1(t)Y_0(t)}{Y_1(t) + Y_0(t)}\right\} \left\{\frac{dN_1(t)}{Y_1(t)} - \frac{dN_0(t)}{Y_0(t)}\right\}$$

UCIrvine University of California, Irvine

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics

Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Extra Slides

with

$$w(t) = [\hat{S}(t-)]^{\rho} [1 - \hat{S}(t-)]^{\gamma}$$

Weighted LR statistics

$G^{\rho,\gamma}$ statistic

 Can be rewritten as the sum, over all failure times, of the weighted difference in estimated hazards

$$G^{\rho,\gamma} = \left(\frac{M_1 + M_0}{M_1 M_0}\right)^{1/2} \sum_{t \in \mathcal{F}} w^*(t) \left[\hat{\lambda}_1(t) - \hat{\lambda}_0(t)\right]$$

with $\hat{\lambda}_i = dN_i(t)/Y_i(t)$ and

$$w^{*}(t) = \left\{ \frac{Y_{1}(t)Y_{0}(t)}{Y_{1}(t) + Y_{0}(t)} \right\} [\hat{S}(t-)]^{\rho} [1 - \hat{S}(t-)]^{\gamma}$$

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics

Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Information growth for the $G^{\rho,\gamma}$ family

Information growth for the $G^{\rho,\gamma}$ family

• Under the null hypothesis $H_0: S_0 = S_1$, the variance of the $G^{\rho,\gamma}$ statistic calculated at calendar time τ reduces to

$$\sigma^2 \propto \int_0^{ au} w^2(t) F_E(au-t) [1-F_C(t)] dS(t)$$

Let σ_j² equal the estimated variance of the G^{ρ,γ} statistic applied at interim analysis j. Then the proportion of information at analysis j, relative to the maximal analysis J, is given by

$$\prod_{j} \equiv \left(\frac{M_{1,j} + M_{0,j}}{M_{1,j}M_{0,j}}\right)^{-1} \sigma_{j}^{2} / \left(\frac{M_{1,J} + M_{0,J}}{M_{1,J}M_{0,J}}\right)^{-1} \sigma_{J}^{2},$$

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics

Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Example: Difference in Information by Accrual for the *G*^{1,0} **Statistic**

Effect of total censoring: No censoring (solid line) to 66% censoring

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics

Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Example: Difference in Information by Accrual for the *G*^{1,1} **Statistic**

Effect of total censoring: No censoring (solid line) to 66% censoring

UCIrvine University of California, Irvine

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics

Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Example: Operating characteristics when testing with the $G^{1,1}$ **Statistic**

- Design
 - One-sided level .05 test
 - O'Brien-Fleming efficacy bound; Pocock futility bound
 - 4 analyses occurring at proportional information of .25, .50, .75, and 1
 - Power of .90 at alternative HR of .75
- Assumed survival and accrual distributions
 - Pooled survival distributed Exponential(.4)
 - Accrual uniform over 3 years
- Suppose true accrual is uniform over 1 year

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Example: Operating characteristics when testing with the $G^{1,1}$ **Statistic**

Stopping boundaries for original design on Z-statistic scale

STOPPING	BC	UNDARIE	ES: No	rmalized	Z-value scal	le
				efficacy	futility	
Time	1	(Pi_1=	0.25)	-3.2642	0.2094	
Time	2	(Pi_2=	0.50)	-2.3082	-0.5534	
Time	3	(Pi_3=	0.75)	-1.8846	-1.1387	
Time	4	(Pi 4=	1.00)	-1.6321	-1.6321	

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Extra Slides

UCIrvine University of California, Irvine

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Example: Operating characteristics when testing with the $G^{1,1}$ **Statistic**

 Stopping boundaries if Unif(0,3) accrual assumed, but true accrual Unif(0,1)

STOPPING	BC	UNDARIE	ES: No	rmalized	Z-value scal	е
				efficacy	futility	
Time	1	(Pi_1=	0.12)	-3.2642	0.2094	
Time	2	(Pi_2=	0.36)	-2.3082	-0.5534	
Time	3	(Pi_3=	0.66)	-1.8846	-1.1387	
Time	4	(Pi 4=	1.00)	-1.6321	-1.6321	

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summary

Extra Slides

UCIrvine

University of California, Irvine

Implementation of group sequential rules

- 1. Need to choose between
 - maintaining maximal statistical information
 - maintaining statistical power
- 2. In addition, need to update our estimate of the information growth curve at each analysis
 - requires updating our estimate of S(t) and F_E(t) at each analysis
 - seems natural to turn to a Bayesian framework if prior information is available for S(t) and/or F_E(t)!

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Implementation of group sequential rules

Proposed algorithm: Step 1

- 1. Specify original design using a parametric design family to satisfy desired operating characteristics
 - 1.1 specify timing of analyses
 - 1.2 specify prior distributions for S(t) and $F_E(t)$
 - 1.3 map information increments to proportion of events for desired timing of first analysis

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Implementation of group sequential rules

Proposed algorithm: Step 2

- 2. At each analysis,
 - 2.1 update estimate of S(t) and $F_E(t)$ with data observed at the time of the analysis
 - Use pooled data so that constraint does not depend on observed treatment effect
 - If no prior data available, could update S(t) and F_E(t) via maximum likelihood
 - 2.2 re-estimate information growth curve
 - 2.3 map information increments to proportion of events for desired timing of future analyses
 - 2.4 constrain previous boundaries to exact timing (based upon current best estimate) and re-estimate future boundaries using pre-specified design family

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Simulation framework

- Generation of alternatives
 - Simulated from "mixings" of the survival curves from the Phase II pilot data
 - 1. 0% mixing: obtain S_1 by sampling only from observed survival for control in pilot data
 - 50% mixing: obtain S₁ by sampling equally from observed survival for control and treatment in pilot data
 - 3. 100% mixing: obtain S_1 by sampling only from observed survival for treatment in pilot data

Design

- One-sided level .05 test
- O'Brien-Fleming efficacy bound; Pocock futility bound
- 4 analyses occurring at proportional information of .25, .50, .75, and 1
- Power of .90 at design alternative (100% mixing) → 507 max events

UCIrvine University of California, Irvine

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Simulation framework

- Consider Type I error and power under varying accrual distributions
 - Entry time distribution

$$F_E(t) = \left(\frac{t}{\theta}\right)^r$$
, with $\theta > 0, r > 0, 0 < t \le \theta$

- Values of θ considered: 1, 3, 5
- Values of r considered: .50, .75, 1, 3, 5

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Simulation framework

- Comparison of monitoring plans
 - 1. <u>Naive</u>: Assume information proportional to number of events
 - Constrained boundaries using only observed phase III data: Update survival distribution using parametric (Weibull) MLE from phase III data observed data up to the time of the interim analysis
 - Constrained boundaries incorporating prior phase II data: Update survival distribution from posterior with prior derived from the phase II pilot data

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Bayesian estimate of pooled survival at interim analyses

 Likelihood: Assume survival follows a Weibull(μ, α) distribution

$$L(\vec{x}|\mu,\alpha) = \prod_{i=1}^{n} f(x_i|\mu,\alpha)^{\delta_i} S(x_i|\mu,\alpha)^{1-\delta_i}$$

where x_i is the observed at risk time for subject *i*, δ_i is an event indicator, and

$$f(t|\mu,\alpha) = \mu\alpha t^{\alpha-1} e^{-\mu t^{\alpha}}$$
$$S(t|\mu,\alpha) = e^{-\mu t^{\alpha}}$$

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Bayesian estimate of pooled survival at interim analyses

Prior distribution for μ and α : Independent Gamma priors for μ and α

 $\mu \sim \text{Gamma}(
ho_1,
ho_2)$ $lpha \sim \text{Gamma}(\kappa_1, \kappa_2)$

*Note: (ρ_1, ρ_2) and (κ_1, κ_2) chosen to match mean and variance of μ and α from pilot data

• Posterior distribution for μ and α : Conditional densities of $\overline{\mu | \alpha, \vec{x}}$ and $\alpha | \mu, \vec{x}$ known up to a constant

 \Rightarrow Gibbs sampling (in combination with adaptive rejection sampling) used for sampling from the posterior distribution of $\mu, \alpha | \vec{x}$

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Simulation Study: Power with accrual over 1 year

			r			
Monitoring Strategy	0.5	0.75	1.0	3.0	5.0	Introduction
Null Hypothesis						Group sequential operating characteristics Constrained boundaries approach to monitoring
Info ∝ Events Const Bound (MLE) Const Bound (Bayes) Intermediate Hypothesis	0.0392 0.0503 0.0501	0.0396 0.0503 0.0501	0.0391 0.0502 0.0501	0.0381 0.0501 0.0500	0.0377 0.0501 0.0500	Monitoring Survival Trials Weighted LR statistics Information growth for weighted LR statistics Ex: Sensitivity of operating characteristics to the censoring distribution
Info ∝ Events Const Bound (MLE) Const Bound (Bayes) Design Alternative	0.2772 0.4081 0.4081	0.2807 0.4087 0.4088	0.2744 0.4064 0.4065	0.2623 0.4053 0.4055	0.2589 0.4055 0.4055	Implementation of group sequential rules Proposed algorithm for monitoring Simulation study Summary Extra Slides
Info \propto Events Const Bound (MLE) Const Bound (Bayes)	0.6967 0.9049 0.9050	0.7042 0.9055 0.9056	0.6917 0.9034 0.9040	0.6661 0.9020 0.9020	0.6582 0.9021 0.9022	

Simulation Study: ASN with accrual over 1 year

Monitoring Strategy	0.5	0.75	r 1.0	3.0	5.0
Null Hypothesis					
Const Bound (MLE) Const Bound (Bayes)	280.1 264.4	275.1 260.2	276.3 261.7	279.8 262.8	279.6 262.2
Intermediate Hypothesis					
Const Bound (MLE) Const Bound (Bayes)	357.0 344.9	353.6 342.0	355.9 344.4	354.9 341.9	<mark>354.1</mark> 340.9
Design Alternative					
Const Bound (MLE) Const Bound (Bayes)	341.2 327.9	338.6 325.9	<mark>341.6</mark> 328.6	337.6 324.2	336.4 323.0

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Summary

Concluding remarks

- From regulatory perspective, frequentist operating characteristics of clinical trial designs must be considered
- When monitoring trial results in a group sequential framework, operating characteristics depend on information growth patterns that can be non trivial
- Late phase clinical trials are an area where we often have prior information on the distribution of the endpoint of interest (particularly in the control population)
 - Many unwilling to accept the use of prior distributions when quantifying measures of treatment effect

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summar

Extra Slides

Summary

Concluding remarks

- However, in some cases the Bayesian framework may be used to improve the implementation of frequentist designs
 - Binomial proportions
 - Weighted survival statistics
 - Longitudinal measures (eg. comparison of slopes over time)
- Software for monitoring survival is available:
 - Constrained boundaries for unified family : SPlus SeqTrial
 - Mapping of statistical information : Me
- Ongoing work:
 - Misspecification of parametric form of entry and survival distributions?
 - Non-stationarity in entry and survival distributions?
 - Monitoring of longitudinal endpoints...

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring Simulation study

Summar

Motivating Example: Phase II prostate cancer data

Simulated from actual trial data

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Alternatives used for simulation study

One simulated dataset under 0% mixing (Null hypothesis)

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides

Alternatives used for simulation study

One simulated dataset under 50% mixing (Intermediate hypothesis)

34

UCIrvine

University of California, Irvine

Introduction

Alternatives used for simulation study

One simulated dataset under 100% mixing (Powered alternative)

Introduction

Group sequential operating characteristics

Constrained boundaries approach to monitoring

Monitoring Survival Trials

Weighted LR statistics Information growth for weighted LR statistics

Ex: Sensitivity of operating characteristics to the censoring distribution

Implementation of group sequential rules

Proposed algorithm for monitoring

Simulation study

Summary

Extra Slides