
STATISTICS IN MEDICINE
Statist. Med. 2001; 20:2383–2397 (DOI: 10.1002/sim.904)

Group comparisons involving missing data in clinical trials:
a comparison of estimates and power (size) for some simple

approaches

Michael E. Miller1;∗;†, Timothy M. Morgan1, Mark A. Espeland1

and Scott S. Emerson2

1Section on Biostatistics; Department of Public Health Sciences; Wake Forest University School of Medicine;
Medical Center Blvd.; Winston-Salem; NC 27157-1063; U.S.A.

2Department of Biostatistics; University of Washington; Seattle; WA 98195-0001; U.S.A.

SUMMARY

When using ‘intent-to-treat’ approaches to compare outcomes between groups in clinical trials, analysts
face a decision regarding how to account for missing observations. Most model-based approaches
can be summarized as a process whereby the analyst makes assumptions about the distribution of the
missing data in an attempt to obtain unbiased estimates that are based on functions of the observed data.
Although pointed out by Rubin as often leading to biased estimates of variances, an alternative approach
that continues to appear in the applied literature is to use :xed-value imputation of means for missing
observations. The purpose of this paper is to provide illustrations of how several :xed-value mean
imputation schemes can be formulated in terms of general linear models that characterize the means
of distributions of missing observations in terms of the means of the distributions of observed data.
We show that several :xed-value imputation strategies will result in estimated intervention e<ects that
correspond to maximum likelihood estimates obtained under analogous assumptions. If the missing data
process has been correctly characterized, hypothesis tests based on variances estimated using maximum
likelihood techniques asymptotically have the correct size. In contrast, hypothesis tests performed using
the uncorrected variance, obtained by applying standard complete data formula to singly imputed data,
can provide either conservative or anticonservative results. Surprisingly, under several non-ignorable
non-response scenarios, maximum likelihood based analyses can yield equivalent hypothesis tests to
those obtained when analysing only the observed data. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

It has become traditional in clinical trials to adopt an ‘intent-to-treat’ approach for test-
ing primary hypotheses in which all individuals are included in analyses according to the
intervention group they were randomly assigned to, regardless of the completeness of their
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follow-up or their adherence. The rationale for this approach is not based on explicit models
or decision theory. Instead, the practice is justi:ed as preserving the bene:ts of randomization
and guarding against worst case scenarios, which are reasonable and defensible aims.
The intent-to-treat approach, since it requires the inclusion of participants who do not adhere

(or who are suspected of not adhering), adds emphasis to the treatment of missing data since
adherence and missing outcomes are often linked. Many proposals for accounting for missing
outcomes when making intervention group comparisons of a single outcome from a controlled
clinical trial have been made [1–4]. These include: (i) ignoring the missing data process and
analysing only the observed data using standard complete case analyses; (ii) imputing values
for the missing observations and using complete data analysis techniques [2; 3; 5–8], and (iii)
postulating an underlying process that may be causing the observations to be missing, thus
potentially necessitating the use of either selection or pattern-mixture models for analysing the
data [4; 9]. To select an optimal statistical approach, the analyst must consider the underlying
process that may have led to the missing observations. However, consideration of this process
is often replaced by a vaguely justi:ed strategy of imputing missing data in a manner chosen
to be ‘conservative’ or to protect against ‘worst case scenarios’ [5–8; 10]. Such strategies may
have good statistical properties only when missing data occur under narrowly circumscribed
circumstances.
In this paper we examine separately the estimation of intervention e<ects and standard

errors associated with strategies in which missing data are replaced with :xed, rather than
randomly selected, values that are chosen based on intervention assignment and observed data.
We :rst demonstrate that imputation strategies of this kind that have been proposed can be
described by general linear models involving combinations of means of outcome measures.
This allows model-based maximum likelihood to serve as a general basis for comparing the
statistical eKciency and size of inference of alternative strategies.
We report several interesting :ndings. First, imputation-based strategies in which variances

are not corrected for imputation of missing data can provide either conservative or anticonser-
vative results, a somewhat counterintuitive :nding since it is thought by many analysts that
applying complete data analysis techniques to data containing imputations always produces
variances that are too small. Second, several :xed-value imputation strategies will result in
intervention e<ect estimates that correspond to maximum likelihood estimates under an analo-
gous underlying model. Third, under several non-ignorable non-response scenarios, the strategy
of including only individuals with complete data in analyses can yield equivalent hypothesis
tests to those obtained using maximum likelihood based strategies. While the general meth-
ods that we present are not new, we are not aware of any publications that have explicitly
drawn connections between results obtained from these commonly used :xed-value imputation
techniques and the more appropriate maximum likelihood techniques.

2. IMPLICATIONS OF NON-ADHERENCE AND LOSS TO FOLLOW-UP

Analytical methods for making comparisons between groups containing missing observations
vary with respect to estimation bias and eKciency. Although not always explicitly stated,
most analytical approaches are based on an underlying model with associated assumptions.
For instance, even in the simplest two-sample situation, the analyst can correctly ignore the
missing data process only when the probability of a missing observation is independent of

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2383–2397
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the missed outcome [9]. Non-ignorable non-response occurs when the probability of response
depends on the unobserved outcome. In this situation, assumptions regarding the missing
data process, which often are not directly veri:able, typically are necessary to provide valid
estimates and inference.
In many clinical trials, it is unlikely that the likelihood of a missing observation is unrelated

to the assigned intervention and=or the unobserved outcome. We will refer to the situation
where the likelihood of missing observations is unrelated to any observed or unobserved
information as scenario 1. More often, the likelihood of a missing observation is linked to
adherence, and thus to any intervention e<ects and possibly to unobserved outcomes [11].
In such situations, analysing only the observed data will often lead to inMated estimates of
intervention e<ects. We consider three such scenarios, which we will describe for a two-armed
trial of a control intervention A versus an active intervention B:

Scenario 2. In the control intervention (A), which may be assumed to have no bene:cial
e<ect, lost follow-up occurs for participants who initiate some form of active therapy
outside the study protocol and thus receive some partial bene:ts. In intervention B,
assumed to be associated with a bene:cial e<ect, lost follow-up occurs for participants
who only partially comply with the treatment regimen and thus lose some potential
bene:ts of therapy.
Scenario 3. Participants in the control group who are lost accrue no bene:t. Intervention
group participants who are lost are those who cannot tolerate or are otherwise unrespon-
sive to the active therapy (and also receive no bene:t).
Scenario 4. Participants in the control group who are lost to follow-up initiate and fully
bene:t from active therapy. Intervention group participants who are lost to follow-up are
those who refuse this active therapy and thus receive no bene:t from randomization to
this study arm.

As stated by Rubin (reference [12], p. 155), ‘without external information there will be no
way to judge whether the non-respondents’ missing values are systematically di<erent from
the respondents’ observed values’. However, knowledge about adherence=patient characteristics
and their relationships to missing outcomes can help to de:ne strategies to obtain unbiased
estimates of intervention di<erences from scenarios such as those described above. Under
scenario 2, missing data might be considered to occur among individuals who have outcomes
that are intermediate between those of control intervention A and active B. The values selected
to impute for missing data would be chosen to be within the range between the mean outcomes
observed for A and B. Imputation under scenario 3 might be devised to protect against bias
that would result from non-response among the non-adherers in the active arm; thus, the
average of observed outcomes from arm A might be imputed for missing observations in
either arm. Scenario 4 may be described as a ‘worst case’ situation in which distributions of
outcomes for lost participants are identical to those assigned to the opposite intervention. Here,
the average of observed outcomes in each trial arm could be imputed for missing outcomes in
the opposite arm. Similar schemes for single imputation of missing discrete data from clinical
trials are described in Wittes et al. [3], and have been used in practice in either primary or
secondary analyses of recent clinical trials [5–8].
Scenarios 2–4 represent situations where there exist systematic di<erences between the dis-

tribution of outcomes (Y ) of participants with observed versus missing data. In Section 3.2
we identify explicit linear models for intervention e<ects in which the means of distributions
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of missing data may be assumed to be linear combinations of the means underlying the ob-
served data. The described Scenarios 1–4 are represented as special cases of this general
class of models. Similar to Shih and Quan [4], we concentrate on a two-sample design with
continuous observations made at one follow-up time. In contrast to Shih and Quan [4], who
emphasize the joint analysis of the probability of drop-outs and the conditional mean of a
continuous measurement for completers, we consider inference on the unconditional, hypothet-
ical complete-data mean. Depending on the type of drop-out that is hypothesized, arguments
can be made in favour of inference that is either conditional or unconditional on whether
an outcome is observed [13–15]. For instance, in cases where loss to follow-up results from
death and the hypothetical unobserved value for the deceased participant is not legitimate to
consider, then the conditional approach can be more appropriate. However, in scenarios like
we have described, where outcomes could be legitimately collected for non-responders, the
unconditional approach can provide more valid inference.

3. NOTATION AND SIMPLE MODELS FOR MISSING DATA

3.1. Notation

Consider a clinical trial where nA and nB participants are randomized to interventions A and
B, which are to be compared with respect to a single outcome after a period of follow-up.
Assume that (i) initial intervention assignment is known for N participants (i=1; : : : ; N ) and
is recorded in the (N × 1) vector X containing elements xi, and (ii) Y contains elements yi and
represents the (N × 1) vector of outcomes, some of which may be missing. The total number of
observations in each intervention group is denoted using nAO and nBO; the corresponding total
number of missing observations is denoted using nAM and nBM. The (N × 1) vector M contains
indicator variables denoting whether observations are missing (MAi=1 and MBi=1) or present
(MAi=0 and MBi=0). Thus, nAM =

∑nA
j=1MAj; nBM =

∑nB
j=1MBj, nA = nAO + nAM, nB = nBO +

nBM, and N = nA + nB. Lastly, allow QYAO to represent the observed mean for intervention
A, QYBO the observed mean for intervention B, 
̂= QYAO − QYBO the observed di<erence, and
ˆvar(
̂) = s2obs(1=nAO + 1=nBO), where s2obs is the pooled variance based on the observed data in
groups A and B.

3.2. A simple model for characterizing missing data

Many analytical methods for addressing missing outcomes correspond to characterizing para-
meters of the distributions of the missing outcomes as a function of the parameters of the
distributions of the observed outcomes. Underlying beliefs regarding the nature of the missing
data process or conservative philosophies [3] can be represented by expressing the means
of the missing data distributions as linear combinations of the means of the observed data
distributions. Let �AO and �BO denote means for the distribution of observed data from the
two study arms and de:ne

�AM = �A + �A�AO + �A�BO

�BM = �B + �B�AO + �B�BO
(1)

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2383–2397
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The coeKcients of these expressions can be selected to correspond to a range of possible as-
sumptions regarding the missing data process, including scenarios 1–4, above. For example, if
one suspects scenario 1, then the underlying assumptions that �AM =�AO and �BM =�BO would
be represented by �A =0; �A =1; �A =0; �B =0; �B =0; �B =1. If scenario 2 is suspected,
then the assumption that �AM =�BM = (�AO + �BO)=2 would be represented by �A =0; �A
=0:5; �A =0:5; �B =0; �B =0:5; �B =0:5. Likewise, for scenario 3, the assumption that
�AM=�BM =�AO corresponds to �A =0; �A =1; �A =0; �B =0; �B =1; �B =0. Finally, if
scenario 4 is adopted, then �AM =�BO; �BM =�AO, and �A =0; �A =0; �A =1; �B =0; �B =0;
�B =1. For clinical trials, careful thought and clinical input is vital for appropriately char-
acterizing the distributions of missing outcomes. If correct assumptions about the missing
data process are made, then unbiased estimates of intervention di<erences are
possible.

4. ESTIMATION OF INTERVENTION DIFFERENCES

We contrast two approaches for developing estimates for the means of the missing data
distributions discussed above: maximum likelihood (ML) and :xed-value imputation (FVI).
Our intent is to demonstrate the concordance of estimates of the relative intervention e<ect
from these two approaches based on models such as (1).

4.1. Maximum likelihood estimation

Shih and Quan [4] detail the theory of maximum likelihood estimation using a pattern-mixture
model approach to factor the likelihood for incomplete data obtained from a clinical trial. If
(’; �) are unknown parameters and X is :xed, the joint probability of Y and M can be
expressed as

P(Y;M |X;’; �)=P(M |X; �)P(Y |M;X;’)

Missing data patterns need to be speci:ed in order to use the pattern-mixture approach. For
our simple two-sample situation, we can form four missing data patterns (that is, two patterns
representing missing or non-missing data within intervention groups A and B, respectively).
We index these patterns using k=1; 2; 3; 4, for intervention A-observed data (AO), intervention
A-missing data (AM), intervention B-observed data (BO) and intervention B-missing data
(BM), respectively. For convenience, at times we use the numerical subscripts 1–4 in place of
the coded subscripts AO, AM, BO and BM. Assume that for group A, MAi∼ind Bernoulli(�AM),
and for group B, MBi∼ind Bernoulli(�BM). If P(Y |M;X;’)∼ind Normal(’(k)); ’=(’AO; ’AM;
’BO; ’BM), and ’(k) = (�(k); �2(k)), then the likelihood for the identi:ed parameters has the
form

L(�AO; �AM; �BO; �BM; ’AO; ’BO)

=�nAOAO �
nAM
AM �

nBO
BO �

nBM
BM

nAO∏
j=1
N (yj |�AO; �2AO)×

nBO∏
j=1
N (yj |�BO; �2BO) (2)
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where �AO =1− �AM and �BO =1− �BM. As Little [16] indicates, when the parameters in ’
and � are distinct and the log-likelihood can be factored into separate components each con-
taining unique parameters, then non-iterative maximum likelihood (ML) estimates can often
be obtained. For likelihood (2), ML estimates of the true means for interventions A and B
are �̂A = �̂AO�̂AO + �̂AM�̂AM and �̂B = �̂BO�̂BO + �̂BM�̂BM. The ML estimate of the intervention
di<erence is Ŝ= �̂A − �̂B.
Because (�AM; �2AM) and (�BM; �2BM) in P(Y |M;X;’) are not identi:ed, a unique solution

to the above equations cannot be obtained without further assumptions to reduce the number
of parameters. These assumptions are referred to as identifying restrictions by Little [16].
Di<erent sets of identifying restrictions give di<erent estimates of the intervention e<ects. The
general linear model speci:ed in (1) represents one functional relationship between the means
of the missing and observed distributions. This model can be used to specify the identifying
restrictions for the means of the distributions of missing data. Many di<erent missing data
processes can be represented through the choice of the underlying coeKcients in (1). By
combining the probabilities of ‘missingness’ with the relationships de:ned by the parameters
in equation (1), the following expressions for the average outcomes for populations receiving
interventions A and B are obtained:

�A = �AM�A + (1− �AM + �AM�A)�AO + �AM�A�BO

�B = �BM�B + �BM�B�AO + (1− �BM + �BM�B)�BO
(3)

The overall intervention e<ect can be written as

�A − �B = (�AM�A − �BM�B) + (1− �AM + �AM�A − �BM�B)�AO
− (1− �BM + �BM�B − �AM�A)�BO (4)

Maximum likelihood estimates of this e<ect can be obtained by substituting the MLEs for
�AO; �BO; �AM and �BM. The MLEs for �AO and �BO are QYAO and QYBO, whereas the MLEs
of �AM and �BM are nAM=(nAO + nAM) and nBM=(nBO + nBM).

4.2. Fixed-value imputation

In :xed-value imputation, each missing data point is replaced according to a selected strategy
and the intervention e<ect is estimated as the di<erence between the means of the augmented
data (observed and imputed) in each intervention. For scenarios 1–4, the associated :xed-
imputation procedure corresponds to the following substitution rules:

1. Observed means from interventions A and B are substituted for missing outcomes in
the arm that the participant was assigned (strategy 1).

2. Average of the observed means from interventions A and B is substituted for missing
outcomes in both intervention arms (strategy 2).

3. Observed mean from arm A (the control arm) is substituted for missing outcomes in
both intervention arms (strategy 3).

4. Mean in each intervention group is substituted for missing data in the other group
(strategy 4).

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2383–2397
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Each of the mean values imputed in strategies 1–4 can also be represented using equa-
tion (1) and the parameters used to express the corresponding scenarios 1–4 in Section 3.2.
Importantly, the application of complete data formula to the data containing :xed-value im-
putations using strategies 1–4 results in moment estimates for intervention e<ects that are
exactly the same as the maximum likelihood estimates obtained from equation (4). This
is easily demonstrated by expressing the intervention means obtained using complete data
formula as weighted linear combinations of the means for the observed and imputed data.
Fixed-value imputation estimates of the means can be expressed as

�̂FVIA =
(

nAO
nAO + nAM

)
QYAO +

(
nAM

nAO + nAM

)
(�A + �A QYAO + �A QYBO)

�̂FVIB =
(

nBO
nBO + nBM

)
QYBO +

(
nBM

nBO + nBM

)
(�B + �B QYAO + �B QYBO)

By calculating ŜFVI = �̂FVIA − �̂FVIB and applying a little algebra, the MLE estimate of S=�A−�B
as de:ned by equation (4) is obtained.

5. VARIANCE CALCULATIONS

When FVI strategies, rather than models, are used to account for missing observations, a basis
is not available for developing appropriate standard errors of estimated intervention di<erences.
A not uncommon strategy is to adopt :xed-value imputation based on a particular strategy
and calculate variances and standard errors as if the imputed data were actually observed.
Depending on the imputation strategy chosen, this practice can lead to variances estimates
that may be either too large or too small. In contrast, model-based likelihood methods provide
a pathway for obtaining variances that asymptotically result in con:dence intervals with the
chosen coverage probability.
Formulae for obtaining estimates of the variances of maximum likelihood estimates of the

intervention e<ect can be obtained using multivariate Taylor series expansions. These variance
estimates contain terms related to the variance of both the estimates of the proportion missing
(binomial variation) and the variability of the observed measurements in each intervention.
Using model (1) to de:ne restrictions on means, and assuming �2AM =�2AO; �

2
BM =�2BO, the

estimated variance of the intervention e<ect takes the form

VML(Ŝ)=K2
1
�̂2AO
nAO

+ K2
2
�̂2BO
nBO

+ K2
3
�̂AO(1− �̂AO)

nA
+ K2

4
�̂BO(1− �̂BO)

nB
(5)

where

K1 = (1− �̂AM + �̂AM�A − �̂BM�B)
K2 = (1− �̂BM + �̂BM�B − �̂AM�A)
K3 = (�A + (�A − 1)�̂AO + �A�̂BO)

K4 = (−�B − �B�̂AO + (1− �B)�̂BO)

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2383–2397
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In the remainder of this section, we contrast this expression for the estimated variance with
the naive, uncorrected estimate of variance obtained using FVI, expressed as

VFVI(Ŝ)=
(
nA + nB
nAnB

)(
1

nA + nB − 2

)
((nAO + nBO − 2)s2obs + nAO�̂AMK2

3 + nBO�̂BMK2
4 ) (6)

We do so not to advocate in any way adopting uncorrected variances, but to indicate that this
approach can have surprisingly diverse consequences for relative size of inference, sometimes
being extremely conservative and other times being quite liberal. This variance estimator can
be expressed as a linear function of s2obs and 
̂2 for each of the four strategies we have
considered.
Table I summarizes the models underlying the four strategies and provides in column 4 the

estimator of the intervention e<ect (which, as noted in Section 4.2, is equivalent for FVI and
ML estimation). Each of these estimators has been expressed as a function of the observed
intervention e<ect. The assumptions corresponding to the model speci:ed in equation (1) and
the associated restrictions on the pattern-mixture model are listed in columns 2 and 3 of
Table I.
The ratio of the ML variance estimate (VML) to the naive, uncorrected variance estimate

(VFVI) can be approximated by

VML

VFVI
=

( K
2
1

�̂AO
+ K2

2
�̂BO

)s2obs + �̂AO�̂AMK2
3 + �̂BO�̂BMK2

4

(�̂AO + �̂BO)s2obs + �̂AO�̂AMK2
3 + �̂BO�̂BMK2

4
(7)

where we assume nA = nB; �̂2 = �̂2A = �̂
2
B, s

2
obs

∼= �̂2, and the quantities nAO−1; nBO−1; nA−1
and nB − 1 are approximated by nAO; nBO; nA and nB. Relative to maximum likelihood,
the use of VFVI will yield the nominal probabilities of type I error when the ratio of the
variance estimates is 1, will be inappropriately anticonservative (liberal) when �̂BOK2

1 +
�̂AOK2

2¿�̂AO�̂BO(�̂AO + �̂BO), and will be conservative when �̂BOK2
1 + �̂AOK2

2¡�̂AO�̂BO(�̂AO +
�̂BO). Thus, the operating properties of hypothesis tests using FVI are governed by the un-
derlying proportion of data observed in each intervention group and the assumptions that are
made relating the means of the distributions of the unobserved data to the corresponding
means of the observed data.
For each of the scenarios we consider, Table I provides in column 5 this ratio for the special

case of �̂O = �̂AO = �̂BO, for which expressions simplify. In this column, R represents the ratio
of the observed intervention e<ect to the observed pooled standard deviation. As intuition
might lead us to believe, use of VFVI under imputation strategy 1 produces hypothesis tests
that are anticonservative, since in the presence of missing data, VFVI will always be smaller
than VML. When �̂AO �= �̂BO �=1, then use of VFVI under strategy 1 will be anticonservative
since �̂AO�̂BO¡1. For �̂AO = �̂BO, use of VFVI under imputation strategies 2 and 3 results in
VML =VFVI and a ratio of 1. For �̂AO �= �̂BO, use of VFVI will always be anticonservative for
strategy 2; whereas, for strategy 3 the test using VFVI is anticonservative when �̂AO¡�̂BO and
conservative when �̂AO¿�̂BO. For strategy 4, the sign of the estimated intervention e<ect does
not change as long as �̂AO+ �̂BO¿1. In this situation, use of VFVI will always be conservative.
We would be reluctant to use any imputation strategy if the proportion of observed data is
small in either group. In Table II, we provide a summary of how hypothesis tests using FVI
perform in comparison to MLE under each strategy.
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Table II. Summary of performance of hypothesis tests using VFVI versus VML.

Performance of VFVI versus VML

Imputation strategy∗ Conservative Correct Anticonservative

1 Never Never Always
2 Never �̂AO = �̂BO �̂AO �= �̂BO
3 �̂AO¿�̂BO �̂AO = �̂BO �̂AO¡�̂BO
4 when �̂AO + �̂BO¿1 Always Never Never

∗ 1. Observed means from interventions A and B for missing responses in the arm that the participant
was assigned.

2. Average of observed means from interventions A and B for missing responses in both intervention
arms.

3. The observed mean from intervention A (potentially a control arm) for missing responses in
both intervention arms.

4. The observed means from interventions A and B for missing responses in the opposite arm (a
cross-over scheme).

Hypothesis tests based on VML can result, at times, in the same signi:cance levels as ob-
tained by analysing only the observed data for each of the four mean imputation schemes
considered. The reason for this can be determined by inspection of equation (4). When �A
and �B both equal zero and the coeKcient associated with �AO (K1 from above) is equal to the
coeKcient associated with �BO (K2 from above), then the estimated complete data interven-
tion e<ect will be directly proportional to the observed intervention e<ect (that is, K
̂ where
K =K1 =K2). Thus, K represents the amount of ‘shrinkage’ of the observed intervention e<ect
in comparison to the estimated complete data e<ect. When the estimate of the intervention
e<ect can be expressed as K
̂; VML may also reduce to the square of the proportionality con-
stant times the observed variance K2 ˆvar(
̂), thus reducing the hypothesis test to a test based
solely on the observed data. This relationship is easy to verify through inspection of equa-
tion (5) when n= nA = nB for imputation strategy 1, since K =K1 =K2 = 1 and K3 =K4 = 0.
For strategies 2–3, the relationship also holds when n= nA = nB and (
̂2=n)→ 0. In contrast,
for strategy 4 it also is necessary to restrict attention to situations where �̂AO + �̂BO¿1. In
summary, for imputation strategies 1–3, an intervention di<erence exists in the observed data
if and only if an intervention di<erence also exists in the full data (that is, for all subjects
irrespective of missingness). For strategy 4, this statement holds when �̂AO + �̂BO¿1.

6. SIMULATION RESULTS

To investigate the consequences of use of VFVI versus VML on the size and power of the test for
an intervention e<ect, we assumed nA = nB =100 and performed a small simulation study. Data
were generated from a normal distribution with unit variance assuming that each of the four
models corresponding to the missing data scenarios previously described were true. Assuming
that S=�A − �B was the true underlying intervention e<ect in the observed data, hypothesis
tests for H0: �A − �B =0 were carried out using two-sided level 0.05 tests. To represent a
realistic situation that might be encountered in a clinical trial, we assumed �AM =�BM =0:2
and allowed S to take the values 0, 0.1, 0.2 and 0.3. Mean estimated intervention di<erences
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Table III. Results from 10 000 simulations to contrast analytical approaches for handling missing observations.

Missing data S Estimated intervention Power (size) VML=VFVI

scenario and di<erence
imputation Observed Using FVI Observed Using VFVI Using VML

strategy∗ data or ML data

1 0.0 −0.0003 −0.0003 0.0539 0.1314 0.0558 1.5562
0.1 0.1037 0.1037 0.0998 0.1913 0.1025 1.5537
0.2 0.1971 0.1971 0.2395 0.3754 0.2419 1.5529
0.3 0.2997 0.2997 0.4708 0.6264 0.4764 1.5531

2 0.0 0.0010 0.0008 0.0532 0.0530 0.0542 0.9913
0.1 0.1238 0.0991 0.1226 0.1222 0.1240 0.9912
0.2 0.2510 0.2009 0.3584 0.3586 0.3626 0.9912
0.3 0.3752 0.3002 0.6632 0.6629 0.6666 0.9912

3 0.0 −0.0008 −0.0008 0.0534 0.0527 0.0536 0.9924
0.1 0.1275 0.1021 0.1287 0.1276 0.1289 0.9935
0.2 0.2504 0.2003 0.3463 0.3432 0.3477 0.9917
0.3 0.3759 0.3006 0.6585 0.6566 0.6598 0.9936

4 0.0 0.0005 0.0004 0.0530 0.0100 0.0500 0.5596
0.1 0.1680 0.1007 0.1892 0.0584 0.1828 0.5618
0.2 0.3351 0.2015 0.5639 0.2968 0.5546 0.5702
0.3 0.4996 0.2999 0.8780 0.6736 0.8743 0.5810

∗ For each scenario used to generate data, the corresponding imputation strategies were:
1. Observed means from intervention groups A and B for missing responses in group that the participant was

assigned.
2. Average of observed means for missing data in both groups A and B.
3. Group A mean for missing data in both groups A and B.
4. Group A mean for missing data in group B and group B mean for missing data in group A.

and power (size) of the tests based on 10 000 simulations are presented in Table III for
three hypothesis testing procedures that used: (i) only observed data, (ii) VFVI obtained from
singly imputed data from the imputation strategy corresponding to the underlying missing
data scenario, and (iii) VML obtained from the pattern-mixture model corresponding to the
underlying missing data scenario. This table also presents the average ratio of VML to VFVI

obtained from the 10 000 simulations.
The results in Table III clearly illustrate that the di<erence between the means of the

observed outcomes for each intervention unbiasedly estimates the true expected di<erences
between the interventions’ outcomes only under scenario 1. FVI and ML provide the same
unbiased estimate of the intervention di<erence in all situations considered. Under the null
hypothesis of S=0, ML always gives the right type I error, while FVI does not under
strategies 1 and 4. For strategy 4, use of the uncorrected variance can result in substantial loss
of power for S¿0 and inappropriate size for S=0. For strategy 4, the actual probability of
type I error associated with use of VFVI is 0.01, even though the analyst using this procedure
would be reporting that the tests were carried out at the 0.05 level. As expected, for the
scenarios considered, ML outperforms FVI for hypothesis testing while providing the same
intervention e<ects that would be obtained using FVI. Finally, as shown algebraically in
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Section 5, the ML technique and analyses of just the observed data provide equivalent power
(size) for strategies 1–4, even though the estimated intervention e<ect can vary greatly using
these two approaches.

7. EXAMPLE

The Fitness, Arthritis and Seniors Trial (FAST) was a clinical trial with the aim of determining
the e<ects of selected exercise programmes on pain and disability in older adults with knee
osteoarthritis [17]. Patients were randomized to one of three interventions at two clinical
centres and were followed for up to 18 months. The three interventions that were used included
an aerobics exercise programme, a resistance exercise programme and a health education
programme. Primary outcome measures were collected at 3, 9 and 18 months follow-up and
included performance measures of physical function and self-reported disability.
For purposes of illustrating the missing data techniques previously described, we only use

data collected for 293 participants randomized to the health education (N =149) and aerobics
(N =144) exercise programmes. The two outcome measures that we consider are: (i) the
distance walked in six minutes and (ii) the time required to get in and out of a simulated car.
The car outcome was collected only at a single clinical site, thus providing a smaller total
sample size (N =138) than that available for the distance walked measure. For illustrative
purposes, we present comparisons between education and aerobics arms of the mean distance
walked and the mean time to get in and out of the car at the 9 month follow-up visit.
Concentrating initially on the distance walked outcome, 23 per cent and 26 per cent of

outcomes were missing at 9 months for the education and aerobics arms, respectively. The
mean distance walked for patients observed at 9 months and receiving the health education
intervention was 1361 feet (approx. 40:8m), whereas the mean distance for those patients
observed at 9 months and receiving the aerobics programe was 1468 feet (approx. 44:0m).
In Table IV, we present analyses of the intervention e<ect under :ve assumptions about the
missing data process and using FVI and ML procedures.
For the distance walked outcome, the estimated intervention e<ect is shrunk toward zero

from the observed −107:19 for imputation strategies 2–4. Strategy 4, which represents the
most conservative assumptions considered regarding the missing data process, provides a 50
per cent reduction in the observed intervention e<ect. The t-statistics associated with VFVI

are almost identical for strategies 2 and 3. Based on the ratio presented in the last column
of Table I, this result was predictable since the proportion of missing observations in each
arm is almost identical. Ignoring the imputations when calculating variances using imputation
strategy 4 produces a t-statistic of −1:70 (p=0:09), resulting in no rejection of the null
hypothesis under this strategy. In contrast, the ML procedure produces t-statistics that are
relatively constant regardless of the underlying model. This result is not surprising. Based
on the characteristics of the data for this example and the results discussed in the previous
section, the ML hypothesis tests would be predicted to reduce to tests based on analysing only
observed data. For strategies 1–4, the precision of the estimated intervention e<ects and the
variance of these e<ects are almost completely dependent on the variance of the intervention
e<ect estimated from the observed data and the multiplier used to shrink the observed estimate.
For the time to get in and out of the car outcome, 28 per cent and 34 per cent of outcomes

were missing at 9 months in the education and aerobics arms, respectively. The mean time

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2383–2397



GROUP COMPARISONS INVOLVING MISSING DATA 2395

Table IV. Results obtained applying missing data procedures to FAST data.

Variable Imputation Estimated Ignore imputations ML estimation
strategy∗ intervention e<ect for variances

Variance t-statistic Variance t-statistic

Distance walked None −107.19 1718.12 −2.59
in 6 min at 1 −107.19 965.43 −3.45 1719.00 −2.59
9-month visit 2 −80.46 972.81 −2.58 975.84 −2.58

3 −78.90 980.52 −2.52 946.96 −2.56
4 −53.73 994.96 −1.70 461.19 −2.50

Time to get in None 2.52 0.695 3.02
and out of car 1 2.52 0.327 4.40 0.654 3.11
at 9-month visit 2 1.73 0.337 2.99 0.320 3.07

3 1.70 0.347 2.89 0.320 3.01
4 0.95 0.367 1.57 0.132 2.61

∗ 1. Observed means from education and aerobics arms for missing responses in arm that the partic-
ipant was assigned.

2. Average of observed means for missing data in both education and aerobics intervention arms.
3. Education mean for missing data in both aerobics and education arms.
4. Education mean for missing data in aerobics arm and aerobics mean for missing data in education

arm.

for the 49 observed outcomes on the education arm was 10.81 seconds, whereas the mean
time for the 46 observed outcomes on the aerobics arm was 8.29 seconds. Results similar to
those presented for the distance walked outcome are presented for this outcome in the bottom
panel of Table IV. The estimated intervention e<ect under strategy 4 is approximately 40 per
cent of the observed e<ect. In contrast to the relatively constant t-statistics obtained from the
ML procedures under all four models, the p-values associated with the t-statistics obtained
ignoring imputations when calculating variances range from ¡0:001 for strategy 1 to 0.120
for strategy 4.
Discussions with interventionists in the FAST study indicate that non-responders in the aer-

obics intervention were most likely to have not been participating in exercise and thus would
have had outcomes similar to those observed for participants in the education intervention.
Thus, the estimated intervention e<ect based on imputation strategy 3 may be the least biased.
It is also believed that non-responders in the education intervention did not begin an exercise
programme. Thus, in this situation, the cross-over imputation strategy produces an estimate
that is most certainly too conservative.

8. DISCUSSION

How an analyst handles non-response during the analysis of clinical trials data can a<ect
the overall conclusions derived from a study. When the probability of response depends on
the unobserved outcome, the missing data process is non-ignorable and using the observed
data in standard complete case analyses can lead to biased estimates. Unbiased estimates of
intervention di<erences are possible if correct assumptions regarding the missing data process
are made and these assumptions are used to form estimation functions of the observed data.
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The choice of a speci:c imputation approach from the many possible strategies for im-
putation of missing observations in clinical trials is inherently based on some underlying
assumptions regarding a model for the missing data process. Even if an analyst selects a spe-
ci:c approach with the primary intent of producing a conservative analysis, then a decision
must be made regarding the degree of conservatism the analyst desires. In contrast to the four
strategies we have considered, more realistic conservatism may be obtained by using non-
zero values for �A and �B in model (1) to allow for the possibility that non-compliers with
missing observations have outcomes that are generally worse than those observed in either
intervention. However, without additional external information, there is little way of knowing
what values �A and �B should take. Ultimately, this choice regarding the desired degree of
conservatism also involves the presence of an underlying belief regarding a model for the
missing data process.
We have illustrated how, under a class of models for the means of missing data, pattern-

mixture models can produce estimates of intervention di<erences in the presence of missing
outcomes that are identical to those obtained under various imputation procedures. However,
the variances obtained from ML estimation using a pattern-mixture model and :xed-value
imputation procedures are not identical. The latter procedure provides variance estimates of
estimated intervention di<erences that can be quite biased.
For strategies 2, 3 and 4, the estimated intervention e<ects from either pattern-mixture

models or imputation procedures ‘penalize’ a trial containing missing data by shrinking to-
ward zero the estimated intervention di<erence that was observed. For each, the ‘penalized’
intervention e<ect was shown to be a multiple of the observed intervention e<ect. Thus, the
overall impact of the intervention in terms of public health must be evaluated based on a
diminished intervention e<ect. The precision of the ‘penalized’ estimate of the intervention
e<ect is also dependent on the precision of the observed intervention e<ect. Use of biased
variance estimates obtained by assuming the imputed observations are observed can ultimately
result in con:dence intervals with inaccurate coverage and hypothesis tests with size less than
the nominally chosen level. An interesting :nding in this paper is that for large samples, the
hypothesis tests obtained from the ML approach can, under certain assumptions, reduce to
tests that are identical to the test obtained if one were to analyse only the observed data.
In the absence of outcome data, the only way to make inference regarding the entire popu-

lation available for randomization is to make assumptions regarding the distribution of missing
data or the missing data process. In the face of uncertainty about this distribution, realistic
assumptions should be made in order to provide estimates (sometimes conservative) that take
into account the assumptions made regarding the data that were not observed. However, once
a set of assumptions are made to obtain the estimate, the appropriate variance that corresponds
with the estimate and assumptions should be used to test hypotheses.
In a randomized trial, the approach used to handle missing data should be speci:ed in

advance. Rather than simply assuming a model that would result in the most conservative
estimated intervention di<erences, such as strategy 4, advice regarding potential missing data
mechanisms should be sought from experienced interventionists. Additionally, individuals that
may be involved in the potential public health policy implications of results from the trial
should be consulted regarding possible interpretations in the presence of di<erent missing data
assumptions. Through advice from these individuals, and experience gained from other similar
randomized trials, characterizations of missing data mechanisms that are more realistic than
worst case scenarios can possibly be developed.
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