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SUMMARY

Longitudinal endpoints are used in clinical trials, and the analysis of the results is often conducted using
within-individual summary statistics. When these trials are monitored, interim analyses that include
subjects with incomplete follow-up can give incorrect decisions due to bias by non-linearity in the
true time trajectory of the treatment e�ect. Linear mixed-e�ects models can be used to remove this
bias, but there is a lack of software to support both the design and implementation of monitoring
plans in this setting. This paper considers a clinical trial in which the measurement time schedule is
�xed (at least for pre-trial design), and the scienti�c question is parameterized by a contrast across
these measurement times. This setting assures generalizable inference in the presence of non-linear
time trajectories. The distribution of the treatment e�ect estimate at the interim analyses using the
longitudinal outcome measurements is given, and software to calculate the amount of information at
each interim analysis is provided. The interim information speci�es the analysis timing thereby allowing
standard group sequential design software packages to be used for trials with longitudinal outcomes. The
practical issues with implementation of these designs are described; in particular, methods are presented
for consistent estimation of treatment e�ects at the interim analyses when outcomes are not measured
according to the pre-trial schedule. Splus=R functions implementing this inference using appropriate
linear mixed-e�ects models are provided. These designs are illustrated using a clinical trial of statin
treatment for the symptoms of peripheral arterial disease. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In clinical trials treatment e�ects are often evaluated with a continuous outcome that is mea-
sured repeatedly over time on each subject. Longitudinal endpoints are used for many reasons
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[1] all of which stem from a basic scienti�c interest in the nature of the time trajectory of
treatment e�ects. Within-subject summary statistics such as the minimum [2], maximum [3],
rate of change [4, 5], or average [6] can be used to focus statistical inference on a clinically
relevant aspect of the time trajectory [7].
In most situations the time trajectory of treatment e�ects is likely to be non-linear, and data-

driven parameterizations of non-linearities are unlikely to extend beyond the observed time
range. Estimation of treatment e�ects in this setting can lead to inference that changes with
the length and distribution of follow-up measurement times; thus for example, the average
outcome will change over time unless treatment e�ects happen to be constant. A treatment
e�ect estimator will be unbiased for a �xed follow-up distribution, but will not necessarily
generalize to any pattern or length of follow-up.
In clinical trials it is common to plan for follow-up at regular intervals, and as a conse-

quence, trial results are interpretable as the e�ects measured with complete follow-up over the
particular choice of measurement times. Thus, in a �xed-sample study (i.e. without interim
analyses) inference is unbaised for the follow-up distribution and generalization is conditional
on that distribution. The addition of interim analyses to a �xed-sample trial introduces the
possibility that the distribution of measurement times at interim analyses will di�er from that
of the �xed-sample study. This will happen when at interim analyses there are subjects who
have not yet completed all follow-up measurements, and as a result, the inference at interim
analyses will be biased relative to that of the �nal analysis [8]. This is an issue with all
methods for selecting interim decision rules including frequentist methods [9], error spending
approaches [10], curtailment designs [11], and Bayesian methods [12].
The analysis of longitudinal endpoints is often conducted using either linear mixed-e�ects

models [13, 14], generalized estimating equations [15, 16], or a 2-stage approach in which
treatment e�ects are compared after �rst calculating a meaningful summary statistic on each
subject [6, 7] (additional discussion and references are provided by Jennison and Turnbull
[17, p. 233]). Unbiased inference is possible as long as the incomplete data are missing at
random or completely at random [18] which is commonly the case at interim analyses. Linear
mixed-e�ects models [19] or equivalent methods for imputation [20] can be applied to get
unbiased inference. The problem can also be approached by parameterizing the time trajectory
[21, 17 p. 68], however continuous-time models are also subject to bias at the interim analyses
if the time-trajectory is misspeci�ed.
To illustrate, we will consider a controlled trial of statin treatment for the symptoms of

peripheral arterial disease [22]. Peripheral arterial disease (PAD) can lead to pain in the legs
that prevents walking, which in turn contributes to progression of the disease. There is interest
in determining if statin treatment may assist in the treatment of the symptoms of PAD. The
primary outcome is the time that a patient can walk on a treadmill before they are stopped
by pain (i.e. peak walk time or PWT), and this will be measured at regular intervals follow-
ing randomization. When designing the PAD trial we might choose the average PWT over
the follow-up times as the scienti�cally meaningful measure of treatment e�ect within each
patient so that treatments are compared based on the average of this within-patient summary
measure.
The objective of this paper is to describe how to design and implement interim analyses

in clinical trials with longitudinal endpoints. Although previous work has shown that un-
biased inference at interim analyses is possible, there is a lack of software to support the
pre-trial evaluation of interim decision rules and the implementation of the design when the
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measurement times di�er from the pre-trial plan. We present software to extend standard
group sequential design packages to include longitudinal endpoints and to address the prac-
tical issues faced when implementing such a design. Section 2 presents the methods and
Section 3 illustrates their application to the PAD example described above.

2. SUMMARY STATISTICS AND GROUP SEQUENTIAL TRIALS

2.1. Within-subject summary statistics

Let Yik(t) denote the outcome for the kth individual in treatment group i (i=0; 1) at time
t after study entry. Suppose that there will be a total of NJ individuals in each treatment
group (i.e. k=1; : : : ; NJ )‡. Furthermore, suppose that the outcome will be measured at times
t=T0¡T1¡ · · ·¡TL for each individual (with T0 = 0 denoting the baseline measurement).
As discussed above, we assume a �xed follow-up interval in order to assure generalizability.
Let Yik denote the outcome vector at the L time points. Suppose that Yik(t) has expectation
�i(t) (and E(Yik)=�i) and variance var(Yik)=�i. In the PAD example, Yik(T‘) denotes
the exercise tolerance (in minutes) for the kth patient in the ith treatment group (i=0 for
placebo, i=1 for active treatment) at measurement time T‘ (T0 = baseline; T1 = 3 months;
T2 = 6 months; T3 = 9 months; T4 = 12 months). Note that it is more e�cient (powerful) to
condition on baseline levels when analyzing treatment e�ects, and although we advocate such
an approach, we do not speci�cally incorporate it into our notation. The practical e�ect of
conditioning on baseline levels would be to reduce the magnitude of the covariance matrix
�i, which could be made explicit during trial design and=or estimated at each interim analysis
(see Section 3.3).
We consider a general parameterization of treatment e�ect obtained by a weighted sum

of the response vector so that the within-subject summary statistic is the weighted sum of
the individual’s response vector. We refer to this statistic as the weighted area under the
response curve (wAUC). Let w′=(w0; : : : ; wL) denote weights selected to express the scienti�c
importance of e�ects at time points T0; : : : ; TL, and de�ne the within-subject summary statistic
Xik =w′Yik . The average outcome with treatment i is given by �̂i=

∑
k Xik =NJ . We let �

denote the e�ect of the new treatment relative to control, and estimate it by �̂1 − �̂0. The
following speci�c measures are included in the wAUC.

1. Clinically relevant timeframe (last value): w′=(0; ::; 0; 1) when the scienti�c interest is
on the response at TL; that is, treatment e�ects are measured by

�=�1(TL)− �0(TL):
It is also common to estimate �1(TL) − �0(TL) by the change from baseline, which
corresponds to weights w′=(−1; 0; : : : ; 0; 1). This parameterization focuses entirely on
the last time point even though outcome measurements are made at earlier times. In the
PAD example, this outcome corresponds to measuring treatment e�ects by the di�erence
in improvement in exercise tolerance after 12 months of treatment.

‡j=1; : : : ; J will index interim analyses (Section 2.2), so NJ is the maximal sample size.
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2. Rate of change (slope): Measure treatment e�ect by the di�erence in the linear time-trend
for the treatment response:

�=�1 − �0
where �i is the least squares approximation to the �rst order linear time trend (slope) in
the response to treatment i. The slope statistic corresponds to a weight vector with ‘th
element:

w‘=
T‘ − �T∑
t(Tt − �T )2

for ‘=0; : : : ; L. In the PAD example w′=(−0:8;−0:4; 0; 0:4; 0:8), which corresponds to
the di�erence in the annual rate of improvement in exercise tolerance between the two
treatment groups.

3. Area under the curve (auc): Treatment e�ects are often parameterized as the area under
the curve (usually standardized by the total measurement time TL). Using a trapezoidal
approximation corresponds to weights: w0 = (T1 − T0)=TL, wL=(TL − TL−1)=TL, and for
‘=1; : : : ; L− 1:

w‘=(T‘+1 − T‘−1)=(2TL)
The auc is often calculated using the di�erence from baseline which corresponds to using
all of the above weights except w0 = (T1 + T0 − 3TL+ TL−1)=(2TL). In the PAD example
using w0 = − 1 and w‘=0:25 corresponds to measuring treatment e�ects by the average
change from baseline over all follow-up measurements.

Note that the wAUC is a function of the follow-up measurement times T1; : : : ; TL; thus, infer-
ence is referenced to the time range, and choosing a di�erent time range will not necessarily
give the same result.
The distribution of the estimated treatment e�ect �̂ follows from the distribution of the

within-subject summary statistic Xik , which has expectation E(Xik)=w′�i and variance var(Xik)
=w′�iw. For large samples �̂ is approximately normally distributed:

�̂∼N(�; (V1 + V0)=NJ ) (1)

where Vi=var(Xik). Thus, the �xed-sample trial with complete data on all participants can
be designed using standard methods based on the above distribution for �̂. Robustness to
departures from normality in small sample sizes is discussed in Section 4.
Notice that in this mean-based inference with balanced data, the treatment e�ect is equiv-

alently viewed as a contrast across the population mean outcomes; that is, treatment com-
parisons can be based on the weighted sum of the averages at each measurement time
(�̂i=

∑
t w(t)[

∑
k Yik(t)=NJ ]), or as the average of the within-individual summary measures

(�̂i=
∑

k[
∑

t w(t)Yik(t)]=NJ ). Without missing data these two approaches are identical, but
with missing data naive application of the latter leads to bias. (Note that this equivalence
will not hold in other settings (e.g. logistic regression) where there is a non-linear link
between the mean and explanatory variables.) With large sample sizes the vector of the
average outcome at each of the L time points is multivariate Normal with expectation �i
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and variance �i=NJ , so that �̂ is distributed as above (equation (1)). This alternative for-
mulation only requires an appropriate covariance structure for the averages at each time
point and does not require assumptions about the distribution of the outcome within an
individual.
Notice also that because the treatment e�ect is de�ned according to the particular choice

of weights w, these weights also de�ne the set of �i that will be considered as null and
alternative hypotheses. For example, if statin treatment causes a transient increase in PWT
that disappears by 12-months, then auc weights classify such e�ects as part of the alternative
hypothesis whereas last-value weights classify the same e�ect as part of the null hypothesis.
It is therefore essential that the weights re�ect the clinical questions.

2.2. Interim analyses with summary statistics

Now suppose that the �xed-sample trial described above will be monitored in J interim
analyses. Let N (L)j denote the number of subjects who have completed follow-up at all L time
points at the jth interim analysis in each treatment group. We assume that N (L)1 ¿0 so that at
least one subject has completed follow-up at the time of the �rst interim analysis. To de�ne
the amount of information (complete and incomplete) at the jth interim analysis we let N (‘)j
denote the number of subjects with outcome measured at times T1; : : : ; T‘ (i.e. with exactly
‘ outcome measurements). For example, in the PAD trial N (3)2 would be 20 if at the second
interim analysis there were 20 subjects with outcome measured at all but the �nal (12-month)
time point (Section 3.2 provides a complete illustration). At the jth analysis the total number
of subjects with one or more follow-up measurements is Nj=

∑L
‘=1 N

(‘)
j . We index the timing

of interim analyses by the number of subjects with complete follow-up N (L)j .
It is possible to use standard group sequential designs if interim analyses are restricted to

subjects who have completed follow-up. In this case the interim analyses occur after collecting
100×N (L)j =NJ per cent of the total information. Restricting attention to subjects with complete
follow-up ignores the information that might be contained in the other subjects. It may be
possible to increase e�ciency by including all follow-up information, especially if the weights
emphasize early e�ects over late e�ects.
To include all information we de�ne Y(‘)ik (‘=1; : : : ; L) as the outcomes in the N (‘)j subjects

with exactly ‘ follow-up measurements; speci�cally, Y(‘)ik =(Yik(T0); : : : ; Yik(T‘)). The expec-
tation of Y(‘)ik is the �rst ‘ elements of �i which we denote by �i(‘) and its variance is given

by the upper ‘× ‘-element submatrix within �i which we denote by �i(‘). Let �Y(‘)i·j denote the
vector of averages among subjects with exactly ‘ outcome measurements at the jth interim
analysis. For large sample sizes, �Y

(‘)
i·j will follow an ‘-dimensional normal distribution with

mean vector �(‘)i and variance matrix �i(‘)=N
(‘)
j . The likelihood is

L=
L∏
‘=1

√
N (‘)j
(2�)‘

det�−1
i(‘) exp

{
−N (‘)j
2

( �Y
(‘)
i·j − �(‘)i )′�−1

i(‘)( �Y
(‘)
i·j − �(‘)i )

}

which is the same as that given by Jennison and Turnbull [17] or Galbraith and Marsh-
ner [19]. The maximum likelihood estimate of the mean outcome vector at the jth interim
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analysis �̂ij is

�̂ij=Vij
L∑
‘=1
�−1
i(‘)
�Y
(‘)
i·j N

(‘)
j

where Vij is the variance of �̂ij:

Vij=
[

L∑
‘=1
�−1
i(‘+)N

(‘)
j

]−1

(Notation: �−1
i(‘+) denotes �

−1
i(‘) augmented with 0’s to increase the dimension to L× L so that

the above sum is properly de�ned.) At the jth interim analysis, the treatment e�ect �̂j and
its variance are given by:

�̂j =w′(�̂1j − �̂0j)w

var(�̂j) =w′(V1j +V0j)w (2)

Using this variance incorporates the information on subjects who have not yet completed
follow-up into the usual group sequential design framework.
Standard mixed-e�ects models can be used to obtain �̂ij and its estimated variance V̂ij.

Such models would use time as a factor variable with an unstructured covariance matrix with
possible adjustment for covariates (see Section 2.4) The average outcome in treatment i at
the jth interim analysis is then given by �̂ij=w′�̂ij which has variance var(�̂ij)=w

′V̂ijw.

2.3. The design of group sequential trials with longitudinal endpoints

To design a group sequential trial requires the test statistic, its distribution, and the timing of
the interim analyses. The test statistic and its distribution are given in the previous section, and
analysis timing is determined by the amount of statistical information that has been accrued.
With a longitudinal endpoint the information is a function of the covariance, the total number
of subjects, and the amount of follow-up on each subject; thus, the timing of the jth interim
analysis is described by �i and N

(‘)
j (for ‘=1; : : : ; L).

The appendix (Section A.1) describes an Splus (or R [23]) function LMEinfo that calculates
the timing of interim analyses from �i and N

(‘)
j for ‘=1; : : : ; L and j=1; : : : ; J . The function

returns the timing of the interim analyses in terms of the e�ective sample size; i.e. the product
of the information and the maximal sample size. The e�ective sample size is between the total
number of subjects enrolled and the number of subjects who have completed follow-up, and
can be used in standard software packages such as Splus SeqTrial [24], Pest [25], or EaST
[26] to describe interim analysis timing. The use of this function is illustrated using the PAD
example in Section 3.

2.4. Flexibility during design implementation

For the purposes of pre-trial planning, the above designs have assumed that follow-up measure-
ments are taken at the same time points in all subjects. However methods for implementation
of the design must allow for deviations from this pre-trial plan. In fact it is possible that the
distribution of follow-up measurements is nearly continuous even though the pre-trial plan
calls for only a few follow-up measurement times.
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Figure 1. Estimation by mapping each measurement to its pre-trial time point when treatment
e�ects are non-linear. Dotted vertical lines denote mapping window, solid lines at bottom
of each panel denote the distribution of measurement times, circle denotes true e�ect, X

denotes the estimate obtained by mapping.

The simplest approach to a non-discrete distribution of follow-up measurements is to map
each measurement to one of the planned times. Mapping a measurement will produce unbiased
estimates as long as the treatment e�ect is constant within the mapping window which is
more likely if the window is small. Figure 1 illustrates the potential for bias when the time-
trajectory for the treatment e�ect is non-linear and measurements do not occur according
to the pre-trial schedule. Panel (a) shows the value of three summary measures (last value,
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average, and slope) when all subjects are measured according to the pretrial plan. Panels
(b)–(d) show these same summary measures when measurement times are shifted to early
in the window, centred within the window, or shifted to late in the window. Bias is large if
treatment e�ects are non-linear and measurements are not centred around the pre-trial time
point (e.g. second and third measurement windows in panels b and d). However, the estimates
have little bias if either treatment e�ects are constant (�rst and fourth windows in all panels)
or if measurements are centred around the pre-planned time (all windows in panel c). Figure
1 also shows that although di�erences from the pre-trial measurement plan can lead to bias in
the overall summary measure (e.g. the average measure in panels b and d), it is also possible
that the bias at one measurement time will be o�set by an opposite bias at another time so
that the overall summary measure has little bias (e.g. the slope summary measure does not
di�er much across panels).
If it is not reasonable to map measurements to a discrete time point, then it is necessary

to account for possible time trends in the treatment e�ect. With truly continuous time mea-
surements it is possible to use growth curve models to estimate a weighted area under the
treatment curve; i.e. �i=

∫
w(t)�i(t) dt. However this approach either requires some knowl-

edge of the form of the time trend or enough data to deduce an approximate form. In clinical
trials we do not usually know how treatment e�ects are likely to evolve, and at interim anal-
yses there is often insu�cient data to deduce treatment e�ect time trends, so a more robust
approach is required.
To minimize bias we consider using a piece-wise linear approximation to the treatment time-

trend within estimation windows centred on the pre-speci�ed measurement times. The treat-
ment e�ects at the discrete times can be estimated from these linear approximations and then
used to estimate �. We de�ne estimation windows which span the interval from the midpoints
between the discrete time points; i.e. the ‘th window runs from (T‘−1+T‘)=2 to (T‘+T‘+1)=2),
with 0 as the lower limit of the �rst window and the maximum time measurement as the up-
per limit of the Lth window. Within each window a least-squares linear approximation to the
treatment time trend is used to estimate the outcome at the time point of interest. The appendix
(Section A.2) describes an Splus/R function (ThetaEst) that de�nes the estimation windows,
�ts a piece-wise linear mixed e�ects model, obtains estimates for �i(T‘) using this model, and
uses these to estimate � and its variance. Figure 2 illustrates estimation based on a piece-wise
linear approximation to the non-linear function in Figure 1. The biases that were present in
Figure 1 are reduced by the piecewise interpolation method. It is of course possible for other
types of non-linear treatment e�ects or other follow-up measurement patterns to produce bias,
and in such cases other interpolation methods (e.g. splines or lowess) might be useful.
Finally, recall that the use of a discrete follow-up distribution was motivated by the need

for reproducible results if treatment e�ects are non-linear. The above approaches use a con-
trast across �i at the pre-de�ned times even though the follow-up measurements are not at
these same times. This approach should also be reproducible as long as the piece-wise linear
approximation is adequate.
In addition to deviations from the pre-trial measurement plan, group sequential trials for

longitudinal endpoints must also allow �exibility in the number and timing of the interim
analyses. Methods for non-longitudinal endpoints are readily applied to longitudinal endpoints
to account for misspeci�cation of the covariance matrix and for deviations in the pre-trial
distribution of follow-up information (see Section 3.3). Furthermore, analysis of trial results
should also be adjusted for the bias introduced by sequential testing. Standard approaches [27]
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Figure 2. Estimation using a piece-wise linear approximation (lines within each mapping window) to
the non-linear function. Plotting symbols are the same as described for Figure 1.

(and software) for bias adjustment also apply to the treatment e�ect estimate �̂j derived from
the longitudinal data.

3. EXAMPLE

3.1. Fixed-sample design

Consider a �xed-sample design for a randomized placebo-controlled clinical trial of statin treat-
ment for PAD as described in the introduction. Suppose that peak walk time will be measured
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after 12-months of treatment only (without repeated measurements); i.e. �=�1(TL)− �0(TL)
and �̂= �Y 1·(TL)− �Y 0·(TL). Based on previous trials in this setting [22] a reasonable between-
subject variance for PWT is 1602, and for design purposes we set the between-subject variance
in subjects assigned to statin treatment at 1802 to re�ect a likely increase in variability due to
the intervention. It follows that with 160 subjects per group var(�̂)= 1602

160 +
1802

160 = 19:04
2, so

if treatment e�ects are measured by the 12-month di�erence, the study will have 88 per cent
power to detect a 60-second di�erence in PWT (a reasonable design point based on previous
trials).
Addition of a baseline measurement can improve power, and it is common to measure

outcome by the change in PWT Xik =Yik(TL) − Yik(T0) with treatment e�ect estimated by
�̂= �X 1 − �X 0. The variance of this estimate is a function of the correlation between mea-
surements, which for placebo treatment is approximately �=0:6. If statin treatment does not
a�ect correlation, then var(�̂)≈ 17, so that power is about 94 per cent. Power can be further
increased by analyzing treatment e�ects conditional on baseline PWT.
Since PAD is a progressive disease it might be scienti�cally relevant to interpret the change

from baseline as an annual rate of change. With this scienti�c interpretation and repeated
measurements at times 0 (baseline) 3, 6, 9, and 12-months, the annual rate of change can
be measured by the slope (i.e. w′=(−0:8;−0:4; 0; 0:4; 0:8)). The power of a design for the
general summary measure �=w′(�1 − �0) depends on the nature of the time trajectory and
the covariance matrixes �i. As commonly happens at the design stage, �i is not known, and
we must evaluate operating characteristics under assumed covariance matrixes. Suppose that
the placebo covariance matrix is exchangeable with correlation 0.6 and variance 1602 but that
active treatment induces a mean-variance relationship as described in the appendix (Section
A.3 and Table V). Obviously, these covariance matrixes are only pre-trial guesses that would
be revised using data at the interim analysis (see Section 3.3).
We explore the power of the design to detect the following alternative hypotheses:

Late e�ect: �′
1 = (0; 0; 0; 0; 60)

Immediate e�ect: �′
1 = (0; 60; 60; 60; 60)

Intermediate e�ect: �′
1 = (0; 0; 0; 60; 60)

Linear e�ect: �′
1 = (0; 15; 30; 45; 60)

Transient e�ect: �′
1 = (0; 60; 60; 60; 0)

We assume �1(0)=0 and �′
0 = (0; 0; 0; 0; 0) which does not a�ect study operating character-

istics. All but the last of these alternatives show a 60-second improvement in PWT after
12-months of treatment, and represent non-null e�ects under the last-value, slope, or average
summary measures. The transient e�ect is a null e�ect under either the last-value or slope
summary measures, but is part of the alternative for the average summary measure. In a �xed
sample design the value for � and the standard error of its estimate are calculated according
to equation (2). Table I shows these values and study power under the various design alter-
natives �1 and possible weights w. The power is consistently high if ‘last-value’ weights are
used (except for transient e�ects), but may be reduced under other weights.

3.2. Group sequential design

Now consider a group sequential design for the PAD trial. With non-longitudinal endpoints,
the timing of interim analyses is usually described by the number of subjects enrolled at the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2457–2475



GROUP SEQUENTIAL TRIALS WITH LONGITUDINAL DATA 2467

Table I. Values for �, the standard error of �̂, and power (�) in a �xed-sample trial under
various weightings and values for the true treatment e�ect �1.

Weighting (w)

Last value auc Slope

�1 � SE(�̂) � � SE(�̂) � � SE(�̂) �

(0; 0; 0; 0; 60) 60.0 17.3 0.93 15.0 12.8 0.22 48.0 15.3 0.88
(0; 60; 60; 60; 60) 60.0 17.3 0.93 60.0 14.3 0.99 48.0 15.3 0.88
(0; 0; 0; 60; 60) 60.0 17.3 0.93 30.0 13.1 0.63 72.0 16.3 0.99
(0; 15; 30; 45; 60) 60.0 17.3 0.93 37.5 13.3 0.81 60.0 15.8 0.97
(0; 60; 60; 60; 0) 0.0 16.0 0.025 45.0 13.6 0.91 0.0 14.3 0.025

time of the analysis. For the purposes of pre-trial evaluation of monitoring plans we assume
that there will be 5 interim analyses after enrolling groups of 80 patients (40=treatment arm).
The information at each interim analysis is also a function of the distribution of follow-up
measurements (i.e. N (‘)j for ‘=1; : : : ; L), and we choose the following as a reference for
evaluation of design properties:

Interim Number of subjects

analysis ( j) N (1)j N (2)j N (3)j N (4)j

1 10 10 10 10
2 10 10 10 50
3 10 10 10 90
4 10 10 10 130
5 0 0 0 160

For example at the second interim analysis 10 subjects (per arm) have completed only the �rst
follow-up assessment, 10 subjects have completed the �rst and second follow-up assessments,
10 subjects have completed the �rst, second, and third assessments, and 50 subjects have com-
pleted all four assessments. We exclude any subjects who have been enrolled (and therefore
have a baseline measurement), but who have not yet had the �rst response measurement.
The amount of information at each interim analysis for each treatment group is calcu-

lated using the function LMEInfo. Table II shows the LMEInfo output for average weights
w′= c(−1; 0:25; 0:25; 0:25; 0:25) and for a treatment covariance matrix corresponding to the
linear evolution of treatment e�ects �1 = c(0; 15; 30; 45; 60). Table III shows the e�ective sam-
ple size and variance under all of the combinations of treatment e�ects and weights described
above. This e�ective sample size and variance can be used in standard group sequential design
software packages to evaluate and select stopping boundaries.
Table IV shows stopping boundaries for group sequential designs with longitudinal out-

comes using a Pocock or O’Brien–Fleming boundary shape [9]. It is apparent that using the
longitudinal data allows smaller critical values than if only complete cases are used. Notice
that the ‘average’ weights incorporate a much greater proportion of the total information at the
interim analyses compared with either the ‘last-value’ or ‘slope’ weights (Table III). Although
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Table II. Comparing the standard error of �̂ and information growth for analyses
based on all follow-up measurements versus analyses based only on complete cases.

�′
1 = (0; 15; 30; 45; 60) and w

′=(−1; 0:25; 0:25; 0:25; 0:25).
All follow-up data Complete cases

Interim E�ective Actual
analysis SE(�̂) sample size∗ SE(�̂) sample size†

1 30.83 29.70 53.14 10
2 19.68 72.92 23.77 50
3 15.78 113.47 17.71 90
4 13.56 153.70 14.74 130
5 13.29 160.00 13.29 160

∗Information at the interim analyses when all data are used at the interim analysis.
†Number of subjects who have completed 12-months of follow-up.

Table III. E�ective sample size (per group) at each interim analysis under various weightings
and several possible treatment e�ects.

Interim analysis

�′
1 1 2 3 4 5

Complete cases only:
(All �1) 10.0 50.0 90.0 130.0 160

Including all follow-up information:
w′=(−1; 0; 0; 0; 1)
(0; 0; 0; 0; 60) 13.2 56.6 97.5 138.0 160
(0; 60; 60; 60; 60) 15.1 59.7 100.8 141.4 160
(0; 0; 0; 60; 60) 14.0 57.5 98.4 138.9 160
(0; 15; 30; 45; 60) 14.3 58.3 99.3 139.8 160
(0; 60; 60; 60; 0) 13.4 57.1 98.1 138.5 160

w′=(−1; 0:25; 0:25; 0:25; 0:25)
(0; 0; 0; 0; 60) 29.1 72.8 113.4 153.6 160
(0; 60; 60; 60; 60) 31.3 74.2 114.7 154.9 160
(0; 0; 0; 60; 60) 28.9 72.2 112.8 153.0 160
(0; 15; 30; 45; 60) 29.7 72.9 113.5 153.7 160
(0; 60; 60; 60; 0) 30.8 74.0 114.5 154.7 160

w′=(−0:8;−0:4; 0; 0:4; 0:8)
(0; 0; 0; 0; 60) 13.8 56.5 97.1 137.4 160
(0; 60; 60; 60; 60) 15.3 58.6 99.3 139.7 160
(0; 0; 0; 60; 60) 15.0 57.6 98.2 138.4 160
(0; 15; 30; 45; 60) 15.1 58.0 98.7 139.0 160
(0; 60; 60; 60; 0) 14.2 57.1 97.8 138.1 160

this might be used to motivate the use of average weights, caution is warranted since these
weights can result in a substantial loss of power if treatment e�ects evolve slowly (Table I).
In the absence of a strong scienti�c motivation for using one of the three weighting schemes,
we would be inclined to use ‘last-value’ weights because they maintain power and still allow
a reasonable increase in e�ciency at the interim analyses.
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Table IV. Group sequential stopping boundaries.

O’Brien–Fleming boundary shape Pocock boundary shape

Interim E�ective Lower Upper E�ective Lower Upper
analysis sample size boundary boundary sample size boundary boundary

O’Brien–Fleming boundary shape:
Complete cases only
1 10 −487.2 556.8 10 −83.8 167.5
2 50 −41.8 111.4 50 8.8 74.9
3 90 7.7 61.9 90 27.9 55.8
4 130 26.8 42.8 130 37.3 46.5
5 160 34.8 34.8 160 41.9 41.9
All data and w′=(−1; 0; 0; 0; 1)
1 14 −328.8 398.6 14 −57.3 140.4
2 58 −26.5 96.2 58 14.1 69.0
3 99 13.4 56.4 99 30.3 52.8
4 139 29.6 40.1 139 38.5 44.6
5 160 34.9 34.9 160 41.5 41.5
All data and w′=(−1; 0:25; 0:25; 0:25; 0:25)
1 29 −117.1 183.6 29 −13.6 91.4
2 73 −6.4 72.9 73 20.2 57.6
3 113 19.4 47.1 113 31.5 46.3
4 154 32.0 34.6 154 38.1 39.6
5 160 33.3 33.3 160 38.9 38.9

3.3. Implementation

Suppose that the PAD trial is designed using the average statistic (w′=(−1; 0:25; 0:25; 0:25;
0:25)) and the corresponding O’Brien–Fleming boundary shape (Table IV). Suppose that the
�rst interim analysis deviates from the timing of the pre-trial plan by occurring when 30
subjects have been followed for 12 months, 20 subjects for 9 months, 15 for 6 months,
and 20 for 3 months. To illustrate issues in implementation, data were simulated using a
covariance structure that di�ered from the pre-trial assumptions described above and with a
non-discrete measurement distribution using piece-wise linear interpolation to estimate �. The
data frame containing measurements for these 85 subjects was then analyzed using ThetaEst

giving �̂=63:1 with variance=329:9.
The e�ect of the above deviations from the pre-trial plan is that the �rst interim analysis is

occurring at a di�erent point in information-time. The interim analysis could proceed by ignor-
ing these di�erences and using the pre-trial stopping rule. The actual operating characteristics
with this approach do not di�er dramatically from the pre-trial characteristics as long as the
deviations are not major [28]. Alternatively, the stopping rule can be recalculated using the
observed proportion of total information. If the trial were to continue until completion, then
the variance of �̂ can be estimated by w′(�̂0 + �̂1)w=160 where �̂i are the observed covari-
ance matrixes calculated by ThetaEst. In the simulated example w′(�̂0 + �̂1)w=160=81:69;
thus, 100× 81:69=329:9=25 per cent of the total information has been accrued. A recalcu-
lated stopping rule can be obtained by interpolating between the pre-trial rules, by using an
error-spending function [10] that approximates the selected OBF design, or by recalculating
the OBF stopping rule using the actual information at the �rst analysis [29]. Suppose we
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choose to interpolate; 25 per cent of total information corresponds to an e�ective sample size
of 40 per group which is 25 per cent of the distance between the e�ective sample sizes of
29 and 73 that represent the �rst and second analyses in the pre-trial plan (Table IV). In-
terpolating between the corresponding stopping rules implies that the trial should be stopped
for lack of e�cacy if �̂¡− 89:4 and for e�cacy if �̂¿155:9. Since �̂=63:1 the trial would
not be stopped. If a termination recommendation were warranted, then the estimated e�ect �̂
should be adjusted for the bias due to sequential testing using the same methods that are used
for non-longitudinal endpoints [27]. As in any group sequential design, the revised stopping
rule and analysis timing would require revision of future stopping rules in order to maintain
operating characteristics [29].

4. DISCUSSION

The methods and software described in this paper allow the design and implementation of
group sequential monitoring plans with longitudinal endpoints. We have based these meth-
ods on a population-level contrast across treatment outcomes at discrete measurement times
which we interpret as a general weighting of the area under the response curve. We use
this framework in order to assure generalizability in trial results even when the time tra-
jectory for treatment e�ects is non-linear. This approach will be less e�cient than using
continuous-time (growth curve) mixed-e�ects models if those models are structured around
the true time trajectory, however it will be not be biased when the time trajectory is
misspeci�ed.
When outcomes are not measured on a regular follow-up schedule our approach is to

use the data to estimate treatment e�ects at pre-de�ned reference time points which in turn
estimate the wAUC. It is also possible to de�ne a continuous weight function and use a
non-parametric mixed-e�ects smoothing function [30] to estimate the weighted area under the
continuous response curve. In such situations study generalizability must still be conditional
on the length of the follow-up interval.
We have considered the problem of conducting interim analyses when at least one subject

has completed the study (i.e. has a measurement at time TL). It is possible that early interim
analyses will be necessary before observing any outcome at time TL. For example, in a
surgery trial it may be necessary to weigh early morbidity against the potential for later
bene�t when there are no data to estimate that bene�t. Although the statistical problems with
extrapolating beyond the range of the data are well known, it may still be necessary to make
interim decisions in such situations. Similarly, the use of mixed-e�ects models with very small
sample sizes (e.g. when only a few subjects have complete follow-up) can give inaccurate
inference, yet interim decisions are still required. Methods that allow interim decision making
when there is little or no information at longer-term follow-up times are subjects of current
research.
We note that if there are non-constant treatment e�ects, then an analysis using repeated

measurements can in fact have less power than an analysis using just the �nal measurement
(Table I). Although this might argue against using repeated measurements in a �xed-sample
trial, these early measurements may be important in a group sequential trial because at interim
analyses they can be used to predict later treatment e�ects.
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The focus of this work is on trials with continuous outcome measurements. Similar issues
exist in trials with survival endpoints in the presence of non-proportional hazards [31]. These
issues also a�ect interim analyses in trials with Poisson outcomes or recurrent binary endpoints.
Regardless of outcome type, the objective should be to maintain trial reproducibility and
generalizability when the nature of the time trajectory of treatment e�ects is unknown. The
approach of this paper is to select the distribution of outcome measurement times and direct
estimation at a scienti�cally meaningful contrast across those pre-de�ned times. This basic
approach can be applied to any type of outcome.

APPENDIX A: SOFTWARE§

A.1. Information at interim analyses (LMEInfo)

Description: Calculates the e�ective sample size at the interim analyses when including sub-
jects with incomplete follow-up in a trial with longitudinal outcome measurements.

LMEInfo <- function(Wt,V0,V1,N) {
L <- nrow(V0)
J <- nrow(N)
rslt <- NULL
for (j in 1:J) {

Nj <- matrix(NA,nc=L,nr=L)
V0inv.j <- matrix(0,nc=L,nr=L)
V1inv.j <- matrix(0,nc=L,nr=L)
for (d in 1:L) {
V0inv.j[1:d,1:d] <- V0inv.j[1:d,1:d] + solve(V0[1:d,1:d])*N[j,d]
V1inv.j[1:d,1:d] <- V1inv.j[1:d,1:d] + solve(V1[1:d,1:d])*N[j,d]

}
V0j <- solve(V0inv.j)
V1j <- solve(V1inv.j)
tmp <- t(Wt) %*% (V0j + V1j) %*% Wt
rslt <- c(rslt,sqrt(tmp))
}
tmp <- sqrt(t(Wt) %*% (V0 + V1) %*% Wt)/sqrt(N[,L])
rslt <- cbind(SElme=rslt,

Info.lme=(1/rslt)^2,
SampleSize.lme=max(N)*(rslt[J]/rslt)^2,
SEcompl=tmp, Info.compl = 1/tmp^2,
SampleSize.compl=N[,L])

rslt
}

§Functions can be downloaded from http:==www.uchsc.edu=pmb=biom=kittelson=jk.htm
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Arguments:
Wt: Weights used to de�ne wAUC.
V0: Covariance matrix for control group.
V1: Covariance matrix for treatment group.
N: Matrix of dimension J × (L + 1) giving N (‘)j where rows represent interim analyses
( j=1; : : : ; J ) and columns denote measurement times ( ‘=0; : : : ; L).

Value: Matrix with J rows (one for each interim analysis) and 6 columns:
Column 1: Standard error of �̂ at each interim analysis when all data are used.
Column 2: Statistical information at each interim analysis when all data are used.
Column 3: E�ective sample size at each interim analysis when all data are used.
Column 4: Standard error of �̂ when interim analyses are based on complete cases only.
Column 5: E�ective sample size when interim analyses are based on complete cases only.
Column 6: Statistical information when interim analyses are based on complete cases only.

A.2. Estimation of treatment e�ects (ThetaEst)

Description: Estimation of �, its standard error, and the covariance matrixes �0 and �1 using
data at an interim analysis.

ThetaEst <- function(dta,T.Infer,Wt) {
L <- length(T.Infer)
breakpts <- (T.Infer[-1] + T.Infer[-L])/2
breakpts <- c(0,breakpts,max(dta$T.meas)*1.00001)
rslt <- NULL
indx <- 0
for (g in unique(dta$group)) {
indx <- indx + 1
grp <- dta$group == g
grpdta <- dta[grp,]
PieceLin.B0 <- matrix(0,nr=nrow(grpdta),nc=L)
PieceLin.B1 <- matrix(0,nr=nrow(grpdta),nc=L)
LinInterp <- rep(T,L)
for (i in 1:L) {

sub <- grpdta$T.meas >= breakpts[i] & grpdta$T.meas < breakpts[i + 1]
PieceLin.B0[sub,i] <- 1
PieceLin.B1[sub,i] <- grpdta$T.meas[sub]
if (length(unique(grpdta$T.meas[sub])) == 1) LinInterp[i] <- F }

X <- cbind(PieceLin.B0,PieceLin.B1[,LinInterp],grpdta$CoVars)
y <- grpdta$y
id <- grpdta$id
REmat <- X[,1:L]
zz <- lme(fixed = y ~ -1 + X, random= ~ -1 + REmat | id,method="ML")
TimeCntrst <- cbind(diag(rep(1,L)),diag(T.Infer))
TimeCntrst <- TimeCntrst[,c(rep(T,L),LinInterp)]
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dims <- length(TimeCntrst)
Theta <- t(Wt )%*% (TimeCntrst %*% zz$coef$fix[1:dims])
Var.Theta <- zz$varFix[1:dims,1:dims]
Var.Theta <- TimeCntrst %*% Var.Theta %*% t(TimeCntrst)
Var.Theta <- t(Wt) %*% Var.Theta %*% Wt
Sigma <- (as.matrix(zz$model$re$id) + diag(rep(1,L)))*zz$sigma^2
tmp <- list(Theta=c(Theta, Var.Theta),Sigma=Sigma)
rslt[[indx]] <- tmp
}
names(rslt) <- paste("Group",unique(dta$group),sep="")
rslt

}

Arguments:
dta Data frame of results at the interim analysis with elements:

$id Factor variable with individual subject id number.
$group 0-1 indicator for treatment group.
$y Outcome measurement.
$T.meas Time at which outcome was measured.
$CoVar Optional matrix of covariates that are included in the mixed-e�ects

model. In particular, baseline measurements can be included for
increased precision.

T.Infer Vector of discrete measurement times used to calculate � (in text: T0; : : : ; TL)
Wt Vector of weights (length L) used to calculate �.

Value: List of lists (one for each treatment group). Each of the treatment group lists has two
elements:

$Theta: Vector with �rst element �̂ and second element var(�̂).
$Sigma: Estimated covariance matrix for the treatment group.

At an interim analysis, the variance is used to estimate the current information in the trial.
The magnitude of �̂ is compared with the design stopping rules to determine if termination
is warranted. The above mixed-e�ects models will provide unbiased estimates of � using
all available data as long as any missing follow-up measurements are missing at random or
missing completely at random.

A.3. Multiplicative mean-variance relationship

Many treatments in�ate the variance. The following Splus=R simulation uses a random mul-
tiplicative o�set (following a lognormal distribution) to get a covariance matrix for use as
the alternative variance V1 in the function LMEInfo. The argument sd = 0.82 controls the
magnitude of the variance, mu denotes the vector of means corresponding to �1, and Sigma0
denotes the control-group covariance matrix �0.
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Table A1. Covariance matrices for the active treatment group (�1 = �1�′
1 ×C1).

�1 �′
1 C1

(0; 0; 0; 0; 60) (160; 160; 160; 160; 180)

⎡
⎢⎢⎢⎣

1:00 0:53 0:53 0:53 0:60
0:53 1:00 0:68 0:68 0:53
0:53 0:68 1:00 0:68 0:53
0:53 0:68 0:68 1:00 0:53
0:60 0:53 0:53 0:53 1:00

⎤
⎥⎥⎥⎦

(0; 60; 60; 60; 60) (160; 180; 180; 180; 180)

⎡
⎢⎢⎢⎣

1:00 0:53 0:53 0:53 0:60
0:53 1:00 0:68 0:68 0:53
0:53 0:68 1:00 0:68 0:53
0:53 0:68 0:68 1:00 0:53
0:60 0:53 0:53 0:53 1:00

⎤
⎥⎥⎥⎦

(0; 0; 0; 60; 60) (160; 160; 160; 180; 180)

⎡
⎢⎢⎢⎣

1:00 0:53 0:53 0:53 0:60
0:53 1:00 0:68 0:68 0:53
0:53 0:68 1:00 0:68 0:53
0:53 0:68 0:68 1:00 0:53
0:60 0:53 0:53 0:53 1:00

⎤
⎥⎥⎥⎦

(0; 15; 30; 45; 60) (160; 161; 165; 172; 180)

⎡
⎢⎢⎢⎣

1:00 0:53 0:53 0:53 0:60
0:53 1:00 0:68 0:68 0:53
0:53 0:68 1:00 0:68 0:53
0:53 0:68 0:68 1:00 0:53
0:60 0:53 0:53 0:53 1:00

⎤
⎥⎥⎥⎦

(0; 60; 60; 60; 0) (160; 180; 180; 180; 160)

⎡
⎢⎢⎢⎣

1:00 0:53 0:53 0:53 0:60
0:53 1:00 0:68 0:68 0:53
0:53 0:68 1:00 0:68 0:53
0:53 0:68 0:68 1:00 0:53
0:60 0:53 0:53 0:53 1:00

⎤
⎥⎥⎥⎦

Ran.offset <- rlnorm(100000,mean=0,sd=0.82)
Ran.offset <- matrix(rep(Ran.offset,length(mu)),ncol=length(mu))
Ran.means <- Ran.offset*mu
tmp <- rmvnorm(100000,Ran.means,cov = Sigma0)
rslt <- cov(tmp)

The PAD designs of section 3 use covariance matrixes from the above simulations with

�0 =160×

⎡
⎢⎢⎢⎢⎣
1:0 0:6 0:6 0:6 0:6
0:6 1:0 0:6 0:6 0:6
0:6 0:6 1:0 0:6 0:6
0:6 0:6 0:6 1:0 0:6
0:6 0:6 0:6 0:6 1:0

⎤
⎥⎥⎥⎥⎦

and under means corresponding to late, immediate, intermediate, linear, and transient e�ects
as shown in Table A1.
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