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Clinical Trials

• Experimentation in human volunteers
– Investigates a new treatment/preventive agent

• Safety: 
» Are there adverse effects that clearly outweigh any 

potential benefit?

• Efficacy: 
» Can the treatment alter the disease process in a 

beneficial way?

• Effectiveness: 
» Would adoption of the treatment as a standard affect 

morbidity / mortality in the population?

3

Statistical Planning

• Satisfy collaborators as much as possible
– Discriminate between relevant scientific hypotheses

• Scientific and statistical credibility

– Protect economic interests of sponsor

• Efficient designs

• Economically important estimates

– Protect interests of patients on trial

• Stop if unsafe or unethical

• Stop when credible decision can be made

– Promote rapid discovery of new beneficial treatments
4

Sample Size Calculation

• Traditional approach
– Sample size to provide high power to “detect” a 

particular alternative

• Decision theoretic approach
– Sample size to discriminate between hypotheses

• “Discriminate” based on interval estimate

• Standard for interval estimate: 95% 
– Equivalent to traditional approach with 97.5% power

5

Issues

• Summary measure
– Mean, geometric mean, median, proportion, hazard…

• Structure of trial
– One arm, two arms, k arms

– Independent groups vs cross over

– Cluster vs individual randomization

– Randomization ratio

• Statistic
– Parametric, semi-parametric, nonparametric

– Adjustment for covariates 6

Refining Scientific Hypotheses

• Scientific hypotheses are typically refined into 
statistical hypotheses by identifying some 
parameter  measuring difference in distribution 
of response
– Difference/ratio of means

– Ratio of geometric means

– Difference/ratio of medians

– Difference/ratio of proportions

– Odds ratio

– Hazard ratio
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Inference

• Generalizations from sample to population
– Estimation 

• Point estimates

• Interval estimates

– Decision analysis (testing)

• Quantifying strength of evidence

8

Measures of Precision

• Estimators are less variable across studies
– Standard errors are smaller

• Estimators typical of fewer hypotheses
– Confidence intervals are narrower

• Able to statistically reject false hypotheses
– Z statistic is higher under alternatives
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Std Errors: Key to Precision

• Greater precision is achieved with smaller 
standard errors
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Ex: One Sample Mean
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Ex: Difference of Indep Means
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Ex: Difference of Paired Means
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Ex: Mean of Clustered Data
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Ex: Independent Odds Ratios
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Ex: Hazard Ratios
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Ex: Linear Regression
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Controlling Variation

• In a two sample comparison of means, we might 
control some variable in order to decrease the 
within group variability
– Restrict population sampled

– Standardize ancillary treatments

– Standardize measurement procedure

18

Adjusting for Covariates

• When comparing means using stratified 
analyses or linear regression, adjustment for 
precision variables decreases the within group 
standard deviation
– Var (Y | X) vs Var (Y | X, W)
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Ex: Linear Regression
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Precision with Proportions

• When analyzing proportions (means), the mean 
variance relationship is important
– Precision is greatest when proportion is close to 0 or 

1

– Greater homogeneity of groups makes results more 
deterministic

• (At least, I always hope for this)
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Ex: Diff of Indep Proportions
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Precision with Odds

• When analyzing odds (a nonlinear function of 
the mean), adjusting for a precision variable 
results in more extreme estimates
– odds = p / (1-p)

– odds using average of stratum specific p is not the 
average of stratum specific odds

• Generally, little “precision” is gained due to the 
mean-variance relationship
– Unless the precision variable is highly predictive

23

Precision with Hazards

• When analyzing hazards, adjusting for a 
precision variable results in more extreme 
estimates

• The standard error tends to still be related to the 
number of observed events
– Higher hazard ratio with same standard error 

greater precision

24

Special Case: Baseline 
Adjustment
• Options

– Final only (throw away baseline)

• V = 2σ2

– Change (final – baseline)

• V = 4σ2 (1 – ρ)

– ANCOVA (change or final adj for baseline

• V = 2σ2 (1 – ρ2)
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Ex: ANCOVA (Baseline 
Adjustment)
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Criteria for Precision

• Standard error

• Width of confidence interval

• Statistical power
– Probability of rejecting the null hypothesis

• Select “design alternative”

• Select desired power

27

Statistics to Address Variability

• At the end of the study:
– Frequentist and/or Bayesian data analysis to assess 

the credibility of clinical trial results

• Estimate of the treatment effect
– Single best estimate

– Precision of estimates

• Decision for or against hypotheses
– Binary decision

– Quantification of strength of evidence

28

Sample Size Determination

• Based on sampling plan, statistical analysis 
plan, and estimates of variability, compute
– Sample size that discriminates hypotheses with 

desired power, or

– Hypothesis that is discriminated from null with desired 
power when sample size is as specified, or

– Power to detect the specific alternative when sample 
size is as specified
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Sample Size Computation
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When Sample Size Constrained

• Often (usually?) logistical constraints impose a 
maximal sample size
– Compute power to detect specified alternative

– Compute alternative detected with high power
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Increasing Precision

• Options
– Increase sample size

– Decrease V

– (Decrease confidence level)

32

Comparison of Study Designs

– Single Arm: Mean; absolute reference      N=    25

– Single Arm: Mean; historical data                      50       

– Two Arms : Diff in Means                                 100

– Two Arms : Diff in Mean Change (r = 0.3)       140

– Two Arms : Diff in Mean Change (r = 0.8)         40

– Two Arms : ANCOVA (r = 0.3)                           81

– Two Arms : ANCOVA (r = 0.8)                           36

– Cross-over: Diff in Means (r = 0.3)                    70

– Cross-over: Diff in Means (r = 0.8)                    20

33

General Comments: Alternative

• What alternative to use?
– Minimal clinically important difference (MCID)

• To detect? (use in sample size formula)

• To declare significant? (look at critical value)

– Subterfuge: 80% or 90%

34

General Comments: Level

• What level of significance?
– “Standard”: one-sided 0.025, two-sided 0.05

– “Pivotal”: one-sided 0.005?

• Do we want to be extremely confident of an effect, 
or confident of an extreme effect

35

General Comments: Power

• What power?
– Science: 97.5% 

• Unless MCID for significance ~50%

– Subterfuge: 80% or 90%

36

Role of Secondary Analyses

• We choose a primary outcome to avoid multiple 
comparison problems
– That primary outcome may be a composite of several 

clinical outcomes, but there will only be one CI, test

• We select a few secondary outcomes to provide 
supporting evidence or confirmation of 
mechanisms
– Those secondary outcomes may be 

• alternative clinical measures and/or 

• different summary measures of the primary clinical 
endpoint
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Secondary Analysis Models

• Selection of statistical models for secondary 
analyses should generally adhere to same 
principles as for primary outcome, including 
intent to treat

• Some exceptions:
– Exploratory analyses based on dose actually taken 

may be undertaken to generate hypotheses about 
dose response

– Exploratory cause specific time to event analyses 
may be used to investigate hypothesized 
mechanisms 38

Subgroups

• Testing for effects in K subgroups
– Does the treatment work in each subgroup?

– Bonferroni correction: Test at α / K

• No subgroups:                                          N = 100

• Two subgroups:                                        N = 230

• Testing for interactions across subgroups
– Does the treatment work differently in subgroups?

• Two subgroups:                                        N = 400

39

Safety Outcomes

• During the conduct of the trial, patients are 
monitored for adverse events (AEs) and serious 
adverse events (SAEs)
– We do not typically demand statistical significance 

before we worry about the safety profile

• We must consider the severity of the AE / SAE

40

Safety Outcomes: Conservatism

• If we perform statistical tests, it is imperative that 
we not use overly conservative procedures
– When looking for rare events, Fisher’s Exact Test is 

far too conservative

• Safety criteria based on nonsignificance of FET is 
a license to kill

– Unconditional exact tests provide much better power

41

Sample Size Considerations

• We can only choose one sample size
– Secondary and safety outcomes may be under- or 

over-powered

• With safety outcomes in particular, we should 
consider our information about rare, devastating 
outcomes (e.g., fulminant liver failure in a 
generally healthy population)
– The “three over N” rule pertains here

– Ensure minimal number of treated individuals 

• Control groups are not as important here, if the 
event is truly rare 42

Sequential Sampling
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Statistical Sampling Plan

• Ethical and efficiency concerns are addressed 
through sequential sampling
– During the conduct of the study, data are analyzed at 

periodic intervals and reviewed by the DMC

– Using interim estimates of treatment effect

• Decide whether to continue the trial

• If continuing, decide on any modifications to 
– scientific / statistical hypotheses and/or

– sampling scheme

44

Ultimate Goal

• Modify the sample size accrued so that
– Minimal number of subjects treated when

• new treatment is harmful,

• new treatment is minimally effective, or

• new treatment is extremely effective

– Only proceed to maximal sample size when

• not yet certain of treatment benefit, and

• potential remains that results of clinical trial will 
eventually lead to modifying standard practice

45

Question

• Under what conditions should we stop the study 
early?

46

Scientific Reasons

• Safety

• Efficacy

• Harm

• Approximate equivalence

• Futility

47

Statistical Criteria

• Extreme estimates of treatment effect

• Statistical significance (Frequentist)
– At final analysis: Curtailment

– Based on experimentwise error

• Group sequential rule

• Error spending function

• Statistical credibility (Bayesian)

• Probability of achieving statistical significance / 
credibility at final analysis

– Condition on current data and presumed treatment effect 48

Sequential Sampling Issues

– Design stage

• Choosing sampling plan which satisfies desired 
operating characteristics

– E.g., type I error, power, sample size requirements

– Monitoring stage

• Flexible implementation to account for 
assumptions made at design stage

– E.g., adjust sample size to account for observed variance

– Analysis stage

• Providing inference based on true sampling 
distribution of test statistics
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Working Example     

• Fixed sample two-sided tests
– Test of a two-sided alternative (+ > 0 > - )

• Upper Alternative:    H+:   + (superiority)    

• Null:                          H0:  = 0 (equivalence)

• Lower Alternative:    H -:   - (inferiority) 

– Decisions:

• Reject H0 , H - (for H+)    T  cU

• Reject H+ , H - (for H0)    cL  T  cU

• Reject H+ , H0 (for H -)    T  cL
50

Sampling Plan: General Approach

– Perform analyses when sample sizes N1. . . NJ

• Can be randomly determined

– At each analysis choose stopping boundaries

• aj < bj < cj < dj

– Compute test statistic Tj=T(X1. . . XNj
)

• Stop if      Tj < aj (extremely low)

• Stop if   bj < Tj < cj (approximate equivalence)

• Stop if      Tj > dj (extremely high)

• Otherwise continue (maybe adaptive modification 
of analysis schedule, sample size, etc.)

– Boundaries for modification of sampling plan

51

Sample Path for a Statistic

52

Fixed Sample Methods Wrong

• Simulated trials under null stop too often

53

Simulated Trials (Pocock)

• Three equally spaced level .05 analyses
Pattern of                 Proportion Significant

Significance           1st      2nd      3rd      Ever

1st only             .03046                      .03046

1st, 2nd             .00807   .00807             .00807

1st, 3rd             .00317            .00317    .00317

1st, 2nd, 3rd        .00868   .00868   .00868    .00868

2nd only                      .01921             .01921

2nd, 3rd                      .01426   .01426    .01426

3rd only                               .02445    .02445

Any pattern          .05038   .05022   .05056    .10830
54

Pocock Level 0.05

• Three equally spaced level .022 analyses
Pattern of                 Proportion Significant

Significance           1st      2nd      3rd      Ever

1st only             .01520                      .01520

1st, 2nd             .00321   .00321             .00321

1st, 3rd             .00113            .00113    .00113

1st, 2nd, 3rd        .00280   .00280   .00280    .00280

2nd only                      .01001             .01001

2nd, 3rd                      .00614   .00614    .00614

3rd only                               .01250    .01250

Any pattern          .02234   .02216   .02257    .05099
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Unequally Spaced Analyses

• Level .022 analyses at 10%, 20%, 100% of data
Pattern of                 Proportion Significant

Significance           1st      2nd      3rd      Ever

1st only             .01509                      .01509

1st, 2nd             .00521   .00521             .00521

1st, 3rd             .00068            .00068    .00068

1st, 2nd, 3rd        .00069   .00069   .00069    .00069

2nd only                      .01473             .01473

2nd, 3rd                      .00165   .00165    .00165

3rd only                               .01855    .01855

Any pattern          .02167   .02228   .02157    .05660
56

Varying Critical Values (OBF)

• Level 0.10 O’Brien-Fleming (1979); equally 
spaced tests at .003, .036, .087

Pattern of                 Proportion Significant

Significance           1st      2nd      3rd      Ever

1st only             .00082                      .00082

1st, 2nd             .00036   .00036             .00036

1st, 3rd             .00037            .00037    .00037

1st, 2nd, 3rd        .00127   .00127   .00127    .00127

2nd only                      .01164             .01164

2nd, 3rd                      .02306   .02306    .02306

3rd only                               .06223    .01855

Any pattern          .00282   .03633   .08693    .09975

57

Error Spending: Pocock 0.05

Pattern of                 Proportion Significant

Significance           1st      2nd      3rd      Ever

1st only             .01520                      .01520

1st, 2nd             .00321   .00321             .00321

1st, 3rd             .00113            .00113    .00113

1st, 2nd, 3rd        .00280   .00280   .00280    .00280

2nd only                      .01001             .01001

2nd, 3rd                      .00614   .00614    .00614

3rd only                               .01250    .01250

Any pattern          .02234   .02216   .02257    .05099

Incremental error    .02234   .01615   .01250

Cumulative error     .02234   .03849   .05099 58

“Group Sequential Designs”

– At each analysis choose stopping boundaries

• aj < bj < cj < dj

– “Boundary shape function” defines how conservative 
the threshold will be at the earliest analyses

• “O’Brien – Fleming”
– Very conservative early, like fixed sample late

• “Triangular test”
– More efficient for intermediate alternatives

• “Pocock”
– Tends toward most efficient for design hypothesis

– Choose critical values to achieve type I error, power

59

Role of Sampling Distribution

60

Major Issue

• Frequentist operating characteristics are based 
on the sampling distribution
– Stopping rules do affect the sampling distribution of 

the usual statistics 

• MLEs are not normally distributed

• Z scores are not standard normal under the null
– (1.96 is irrelevant)

• The null distribution of fixed sample P values is not 
uniform

– (They are not true P values)
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Sampling Distribution of MLE

62

Sampling Distribution of MLE

63

Sampling Distributions

64

Sequential Sampling: The Price

• It is only through full knowledge of the sampling 
plan that we can assess the full complement of 
frequentist operating characteristics
– In order to obtain inference with maximal precision 

and minimal bias, the sampling plan must be well 
quantified

– (Note that adaptive designs using ancillary statistics 
pose no special problems if we condition on those 
ancillary statistics.)

65

Familiarity and Contempt

• For any known stopping rule, however, we can 
compute the correct sampling distribution with 
specialized software
– Standalone programs

• PEST (some integration with SAS)

• EaSt

– Within statistical packages

• S-Plus S+SeqTrial

• SAS PROC SEQDESIGN

66

Familiarity and Contempt

• From the computed sampling distributions we 
then compute

• Bias adjusted estimates

• Correct (adjusted) confidence intervals

• Correct (adjusted) P values

• Candidate designs can then be compared with 
respect to their operating characteristics
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Example: P Value

• Null sampling density tail

68

Inferential Methods

• Just extensions of methods that also work in 
fixed samples
– But in fixed samples, many methods converge on the 

same estimate, unlike in sequential designs

69

Point Estimates

– Bias adjusted (Whitehead, 1986)

• Assume you observed the mean of the sampling 
distribution

– Median unbiased (Whitehead, 1983)

• Assume you observed the median of the sampling 
distribution

– Truncation adapted UMVUE (Emerson & Fleming, 
1990)

– (MLE is the naïve estimator: Biased with high MSE)

70

Interval Estimates

• Quantile unbiased estimates
– Assume you observed the 2.5th or 97.5th percentile

• Orderings of the outcome space
– Analysis time or Stagewise

• Tend toward wider CI, but do not need entire 
sampling distribution

– Sample mean

• Tend toward narrower CI 

– Likelihood ratio

• Tend toward narrower CI, but less implemented

71

P values

• Orderings of the outcome space
– Analysis time ordering

• Lower probability of low p-values

• Insensitive to late occurring treatment effects

– Sample mean

• High probability of lower p-values 

– Likelihood ratio

• Highest probability of low p-values

72

Inferential Methods

Example
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73

Stopping Boundaries
• The choice of stopping boundaries is typically 

governed by a wide variety of often competing 
goals.
– The appropriateness of any particular boundary will 

need to be carefully evaluated

• For the present, however, we consider only the 
basic framework for a stopping rule as a 
“Sampling Plan”.

74

Example

• Two-sided level .05 test of a normal mean (1 
sample)
– Fixed sample design

• Null: Mean = 0; Alt  : Mean = 2

• Maximal sample size: 100 subjects

– Early stopping for harm, equivalence, efficacy 
according to value of sample mean

• A two-sided symmetric design (Pampallona & 
Tsiatis, 1994) with a maximum of four analyses 
and O’Brien-Fleming (1979) boundary shapes

75

Example

• “O’Brien-Fleming” stopping rule
– At each analysis, stop early if sample mean is 

indicated range

N           Harm            Equiv        Efficacy

25        < -4.09             ---- > 4.09

50        < -2.05   (-0.006,0.006)    > 2.05

75        < -1.36   (-0.684,0.684)    > 1.36     

76

Stopping Rule

77

Sampling Densities

78

Statistical Issues

• Estimate of the treatment effect is no longer 
normally distributed The standardization to a Z 
statistic does not produce a standard normal

• The number 1.96 is now irrelevant

– Converting that Z statistic to a fixed sample P value 
does not produce a uniform random variable  under 
the null

• We cannot compare that fixed sample P value to 
0.025
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79

Statistical Issues: Type I, II Error

• Computation of design operating characteristics 
needs to use correct sampling density.
– Type 1 error (size of test)

• Probability of incorrectly rejecting the null 
hypothesis

– Power (1 - type II error)

• Probability of rejecting the null hypothesis

• Varies with the true value of the measure of 
treatment effect

80

Type I Error

• Null sampling density tails beyond crit value
– Fixed sample test: Mean 0, variance 26.02, N 100

• Prob that sample mean is greater than 1 is 0.025

• Prob that sample mean is less than -1 is 0.025

• Two-sided type I error (size) is 0.05

– O’Brien-Fleming stopping rule: Mean 0, variance 
26.02, max N 100

• Prob that sample mean is greater than 1 is 0.0268

• Prob that sample mean is less than -1 is 0.0268

• Two-sided type I error (size) is 0.0537

81

Type I Error: Area Under Tails

82

Power

• Alternative sampling density beyond crit value
– Fixed sample test: variance 26.02, N 100

• Mean 0.00: Prob that sample mean > 1 is 0.025

• Mean 1.43: Prob that sample mean > 1 is 0.800

• Mean 2.00: Prob that sample mean > 1 is 0.975

– O’Brien-Fleming stopping rule: variance 26.02, max N 
100

• Mean 0.00: Prob that sample mean > 1 is 0.027

• Mean 1.43: Prob that sample mean > 1 is 0.794

• Mean 2.00: Prob that sample mean > 1 is 0.970

83

Power: Area Under Tail

84

Statistical Issues: Inference

• Measures of statistical inference should be 
based on the sampling density.
– Frequentist inferential measures

• Estimates which
– minimize bias

– minimize mean squared error

• Confidence intervals

• P values

• Classical hypothesis testing
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85

P value

• Null sampling density tail beyond observation
– Fixed sample: Obs 0.4, Mean 0, variance 26.02, N 

100

• Prob that sample mean is greater than 0.4 is 0.217

• Prob that sample mean is less than 0.4 is 0.783

• Two-sided P value is 0.434

– O’Brien-Fleming stopping rule: Obs 0.4, Mean 0, 
variance 26.02, max N 100

• Prob that sample mean is greater than 0.4 is 0.230

• Prob that sample mean is less than 0.4 is 0.770

• Two-sided P value is 0.460 86

P value: Area Under Tail

87

Confidence Interval

• Sampling density tail beyond observed value
– Fixed sample: 95% CI for Obs 0.4, variance 26.02, N 

100

• Mean 0.00: Prob that sample mean > 0.4 is 0.217

• Mean 1.43: Prob that sample mean > 0.4 is 0.978

• 95% CI should include 0, but not 1.43 

– O’Brien-Fleming stopping rule: 95% CI for Obs 0.4, 
variance 26.02, max N 100

• Mean 0.00: Prob that sample mean > 0.4 is 0.230

• Mean 1.43: Prob that sample mean > 0.4 is 0.958

• 95% CI should include 0 and 1.43 88

Confidence Interval

89

Point Estimates

• Effect of sampling distribution on estimates
– For observed sample mean of 0.4, some point 

estimates are computed based on summary 
measures of the sampling distribution.

– We can examine how the stopping rule affects the 
summary measures for sampling distribution

• If they differ, then the corresponding point 
estimates should differ

90

Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 0.000

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming

Mean                                  0.000      0.000

Median                               0.000      0.000

Mode                                  0.000      0.000

Maximal for                        0.000      0.000
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Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 0.400

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming

Mean                                  0.400      0.380

Median                               0.400      0.374

Mode                                  0.400      0.000

Maximal for                        0.400      0.400 92

Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 1.430

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming

Mean                                  1.430      1.535

Median                               1.430      1.507

Mode                                  1.430      1.370

Maximal for                        1.430      1.430

Alternative Sampling Densities

94

Choice of Stopping Rule

• The choice of stopping rule will vary according to 
the exact scientific and clinical setting for a 
clinical trial

– Each clinical trial poses special problems

– Wide variety of stopping rules needed to address the 
different situations

– (One size does not fit all)

95

Impact on Sampling Density

• When using a stopping rule, the sampling 
density depends on exact stopping rule

– This is obvious from what we have already seen.

– A fixed sample test is merely a particular stopping 
rule:

• Gather all N subjects’ data and then stop

96

Compared to Fixed Sample

• The magnitude of the effect of the stopping rule 
on trial design operating characteristics and 
statistical inference can vary substantially

– Rule of thumb:

• The more conservative the stopping rule at interim 
analyses, the less impact on the operating 
characteristics and statistical inference when 
compared to fixed sample designs.
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97

OBF vs Pocock Stopping Rules

98

Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 0.000

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming Pocock

Mean                                  0.000      0.000 0.000

Median                               0.000      0.000 0.000

Mode                                  0.000      0.000 0.000

Maximal for                        0.000      0.000 0.000

99

Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 0.400

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming Pocock

Mean                                  0.400      0.380       0.372

Median                               0.400      0.374       0.333

Mode                                  0.400      0.000       0.040

Maximal for                        0.400      0.400 0.400 100

Sampling Distn Functionals

• Effect of sampling distribution on estimates
– Sampling distribution summary measures for variance 

26.02, max N 100

True treatment effect: Mean = 1.430

Sampling Dist                    Fixed     O’Brien-

Summary Measure Sample Fleming Pocock

Mean                                  1.430      1.535        1.593

Median                               1.430      1.507        1.610

Mode                                  1.430      1.370        1.680

Maximal for                        1.430      1.430 1.430

Alternative Sampling Densities

102

Nonbinding Futility Boundaries
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Reasons for Early Stopping

• Ethical
– Individual

• Protect patients on study

• Protect patients who might be accrued to study

– Group

• Promote rapid discovery of new treatments

• Economic
– Avoid unnecessary costs of RCT

– Facilitate earlier marketing

104

Role of Futility Boundaries

• When clinically relevant improvement has been 
convincingly ruled out and no further useful 
information to be gained
– (Is further study of subgroups or other endpoints still 

in keeping with informed consent?)

• Futility boundaries usually do not indicate harm

• Because most RCT do not reject the null 
hypothesis, the major savings in early stopping 
are through a futility boundary
– Also, not as much need for early conservatism

105

Potential Issue

• Compared to a stopping rule with no futility 
boundary
– The critical value at the final analysis can be lower

• Some of the trials stopped early for futility might 
have otherwise been type I errors at the final 
analysis

• Depends on the early conservatism of the futility 
boundary

106

Nonbinding Futility

• Some clinical trialists believe that FDA requires 
that the futility rule be ignored when making 
inference
– Such builds in conservatism

– True type I error is smaller than nominal

– True power is smaller than normal

• This is purposely using the wrong sampling 
density
– Not good statistics—game theory must be motivation

107

Impact on Sampling Densities
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Estimated Treatment Effect

S
am

pl
in

g 
D

en
si

ty

-0.2 -0.1 0.0 0.1 0.2

0
10

20
30

One-sided symm Pocock, J= 4
Fixed sample test (matching ASN)

Estimate (Null: Theta = 0)

Estimated Treatment Effect

S
am

pl
in

g 
D

en
si

ty

-0.2 -0.1 0.0 0.1 0.2

0
10

20
30

Single Boundary Pocock, J= 4
Fixed sample test (matching ASN)

Estimate (Alt: Theta = -0.07)
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Correct Inference

• The statistically correct, efficient approach is to 
base inference on the real futility boundary
– Demands correct pre-specification of the futility 

boundary

– Demands a clear paper trail of analyses performed
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Boundary Scales

110

Boundary Scales

• Stopping rule for one test statistic is easily 
transformed to a rule for another statistic

• “Group sequential stopping rules”
– Sum of observations

– Point estimate of treatment effect

– Normalized (Z) statistic

– Fixed sample P value

– Error spending function

• Bayesian posterior probability 

• Stochastic Curtailment
– Conditional probability

– Predictive probability

111

Correspondence Among Scales

• Choices for test statistic Tj

– All of those choices for test statistics can be shown to 
be transformations of each other

– Hence, a stopping rule for one test statistic is easily 
transformed to a stopping rule for a different test 
statistic

– We regard these statistics as representing different 
scales for expressing the boundaries

112

Boundary Scales: Notation
• One sample inference about means

– Generalizable to most other commonly used models
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Partial Sum Scale

• Uses:
– Cumulative number of events

• Boundary for 1 sample test of proportion

– Convenient when computing density
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MLE Scale
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• Uses:
– Natural (crude) estimate of treatment effect
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Normalized (Z) Statistic Scale
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• Uses:
– Commonly computed in analysis routines
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Fixed Sample P Value Scale

• Uses:
– Commonly computed in analysis routine

– Robust to use with other distributions for estimates of 
treatment effect
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Error Spending Scale

• Uses:
– Implementation of stopping rules with flexible 

determination of number and timing of 
analyses
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Bayesian Posterior Scale

• Uses:
– Bayesian inference (unaffected by stopping)

– Posterior probability of hypotheses
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Conditional Power Scale

• Uses:
– Conditional power

– Probability of significant result at final analysis 
conditional on data so far (and hypothesis)

– Futility of continuing under specific hypothesis
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Conditional Power Scale (MLE)

• Uses:
– Conditional power

– Futility of continuing under specific hypothesis
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Predictive Power Scale
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• Uses:
– Futility of continuing study
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Predictive Power (Flat Prior)
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• Uses:
– Futility of continuing study
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Statistics Used In Science

• “Scientific scales”
• Summary measures of the effect 

– Means, medians, geometric means, proportions…

• Interval estimates for those summary measures
– (Probabilities merely used to characterize the definition 

of the interval)

• “Statistical scales”
– The precision with which you know the true effect

• Power, P values, posterior probabilities

– Predictions of the sample you will obtain

• Conditional power, predictive power 124

Dangers of Statistical Scales

125

My View

• Statistically

• Scientifically

126

My View

• Statistically
– It doesn’t really matter

• Scientifically
– You see what a difference it makes
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Setting

• Pre-hospital emergency setting
– Severe trauma

• Waiver of informed consent
– Effectiveness studies

– Impact on prisoners, minors, DOD

– Notification of participants

• Treatment in field
– Hospital care according to current local standards

– Largely passive collection of hospital data

128

Hypertonic Resuscitation

• Hypertonic saline +/- dextran vs normal saline
– Osmotic pressure to restore blood volume

– Modulation of immune response during reperfusion

• Hypovolemic shock
– SBP < 70   OR   SBP < 90 and HR > 108

– Proportion alive at 28 days

• 4.8% absolute improvement (69.4% vs 64.6%)

129

Sample Size

• Multiple comparison issue
– HSD vs NS

– HS vs NS

• Bonferroni adjustment
– One-sided level 0.0125 tests

• Experimentwise power: 80%
– Each comparison has 62.6% power

• Sample size: 3,726
– 1 HSD : 1 HS : 1.414 NS

130

Noninferiority

• Department of Defense
– 250 cc HS weighs less than 2,000 cc NS

– Even if no benefit from HS, may want to use if not 
inferior to NS

• Proving noninferior
– Define margin of “unacceptably inferior”

• Absolute decrease of 3% 

– CI at end of trial must exclude the margin

• 80% confidence interval

131

Okay, so far?

• 4.8% improvement in 28 day survival
– 28 day survival clinically relevant?

– 4.8% improvement clinically important?

– Realistic based on prior knowledge? 

• Experimentwise errors
– HS and HSD clinically equivalent?

– 0.025 type I error, 80% power statistically credible?

132

Okay, so far?

• Noninferiority
– 3% decrease justified? In civilians?

– 80% confidence interval reasonable standard?

– Are we answering the DoD’s questions?

• (Additional fluids not restricted)

• Sample size of 3,726 without consent?
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Statistical Sampling Plan

• Ethical and efficiency concerns are addressed 
through sequential sampling
– During the conduct of the study, data are analyzed at 

periodic intervals and reviewed by the DMC

– Using interim estimates of treatment effect

• Decide whether to continue the trial

• If continuing, decide on any modifications to 
– scientific / statistical hypotheses and/or

– sampling scheme

134

Protocol Stopping Rule

2.290-0.2903,726Sixth

2.540-0.7003,105Fifth

2.860-1.2002,484Fourth

3.350-1.8001,863Third

4.170-2.8001,242Second

6.000-4.000621First

ZZ
N 

Accrue

Efficacy BoundaryFutility Boundary
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Efficacy Boundary

0.040 (0.005, 0.078); P = 0.01300.0422.2903,726Sixth

0.048 (0.010, 0.085); P = 0.00700.0522.5403,105Fifth

0.060 (0.019, 0.102); P = 0.00250.0652.8602,484Fourth

0.082 (0.035, 0.129); P = 0.00040.0883.3501,863Third

0.129 (0.070, 0.181); P < 0.00010.1344.1701,242Second

0.263 (0.183, 0.329); P < 0.00010.2726.000621First

Est (95% CI; One-sided P)Crude DiffZ
N 

Accrue

Efficacy Boundary
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Futility Boundary

-0.003 (-0.041, 0.032); P = 0.5975-0.005-0.2903,726Sixth

-0.010 (-0.048, 0.028); P = 0.7090-0.014-0.7003,105Fifth

-0.022 (-0.064, 0.019); P = 0.8590-0.027-1.2002,484Fourth

-0.041 (-0.088, 0.006); P = 0.9581-0.047-1.8001,863Third

-0.084 (-0.137, -0.026); P = 0.9973-0.090-2.8001,242Second

-0.172 (-0.238, -0.092); P > 0.9999-0.181-4.000621First

Est (95% CI; One-sided P)
Crude 

DiffZ
N 

Accrue

Futility Boundary
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Relative Advantages

• Which is the best scale to view a stopping rule?
– Maximum likelihood estimate

– Z score / fixed sample P value

– Error spending scale

– Stochastic curtailment

• Conditional power

• Predictive power 

138

Current Relevance

• Many statisticians (unwisely?) focus on error 
spending scales, Z statistics, fixed sample P 
values when describing designs

• Some statisticians have (unwisely?) suggested 
the use of stochastic curtailment for
– Defining prespecified sampling plans

– Adaptive modification of sampling plans
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Unified Family: MLE Scale

– Down columns: Early stopping vs no early stopping

– Across rows: One-sided vs two-sided decisions

140

Unified Family: MLE Scale

• All of the rules depicted have the same type I 
error and power to detect the design alternative

141

Case Study: 
Clinical Trial In Gm- Sepsis
• Randomized, placebo controlled Phase III study 

of antibody to endotoxin
• Intervention: Single administration

• Endpoint: Difference in 28 day mortality rates
– Placebo arm: estimate 30% mortality

– Treatment arm: hope for 23% mortality

• Analysis: Large sample test of binomial proportions
– Frequentist based inference

– Type I error: one-sided 0.025

– Power: 90% to detect θ < -0.07

– Point estimate with low bias, MSE; 95% CI
142

Frequentist Inference

0.025(-0.099, 0.000)-0.050-0.0500.025(-0.086, 0.000)-0.043-0.0431700

0.029(-0.098, 0.002)-0.044-0.0420.067(-0.079, 0.010)-0.031-0.0291275

0.078(-0.095, 0.014)-0.035-0.0290.401(-0.061, 0.044)-0.0060.000850

0.371(-0.084, 0.053)-0.0100.0000.977(0.001, 0.139)0.0770.086425

Futility

0.025(-0.099, 0.000)-0.050-0.0500.025(-0.086, 0.000)-0.043-0.0431700

0.023(-0.101, -0.001)-0.055-0.0570.012(-0.096, -0.007)-0.054-0.0571275

0.018(-0.114, -0.004)-0.065-0.0700.002(-0.130, -0.025)-0.080-0.086850

0.010(-0.152, -0.015)-0.089-0.0990.000(-0.224, -0.087)-0.163-0.171425

Efficacy

P val95% CI
Bias Adj
EstimateMLEP val95% CI

Bias Adj
EstimateMLEN

PocockO'Brien-Fleming
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Z scale, Fixed Sample P value

144

Error Spending Functions

• My view: Poorly understood even by the 
researchers who advocate them
– There is no such thing as THE Pocock or O’Brien-

Fleming error spending function

• Depends on type I or type II error

• Depends on number of analyses

• Depends on spacing of analyses
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OBF, Pocock Error Spending

146

Function of Alternative

• Error spending functions depend on the 
alternative used to compute them
– The same design has many error spending functions

• JSM 2009: Session on early stopping for harm in 
a noninferiority trial
– Attempts to use error spending function approach

– How to calibrate with functions used for lack of 
benefit?

147

Error Spent by Alternative

OBF Error Spending Functions by The
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Stochastic Curtailment

• Stopping boundaries chosen based on 
predicting future data

• Probability of crossing final boundary
– Frequentist: Conditional Power

• A Bayesian prior with all mass on a single 
hypothesis

– Bayesian: Predictive Power

149

But What If?

• It is common for people to ask about the 
possibility of a reversed decision
– But suppose we did not stop for futility. What would 

be the probability of getting a significant result if we 
continued to the maximal sample size

• This is easily computed conditional on the 
observed results IF we know the true treatment 
effect
– Conditional power: Assume a particular effect

– Predictive power: Use a Bayesian prior distribution
150

Stochastic Curtailment

• Boundaries transformed to conditional or 
predictive power
– Key issue: Computations are based on assumptions 

about the true treatment effect

• Conditional power
– “Design”: based on hypotheses

– “Estimate”: based on current estimates

• Predictive power
– “Prior assumptions”
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Conditional/Predictive Power

O’Brien-Fleming Efficacy, P=0.8 FutilitySymmetric O’Brien-Fleming

0.1770.3120.1420.592-0.0310.1240.2410.0910.500-0.0281275

0.0630.2470.0150.648-0.0100.0230.1430.0020.5000.000850

0.0080.2220.0000.7190.0470.0000.0770.0000.5000.085425

Futility (rejects -0.0866)Futility (rejects -0.0855)

0.1260.0770.0930.500-0.0570.1240.0770.0910.500-0.0571275

0.0230.0150.0020.500-0.0850.0230.0150.0020.500-0.085850

0.0000.0020.0000.500-0.1700.0000.0020.0000.500-0.171425

Efficacy (rejects 0.00)Efficacy (rejects 0.00)

NoninfSponsorEstimateDesignMLENoninfSponsorEstimateDesignMLEN

Predictive PowerConditional PowerPredictive PowerConditional Power
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So What?

• Why not use stochastic curtailment?
– What treatment effect should we presume?

• Hypothesis rejected; current estimate?

– What threshold should be used for a “low” probability

• Choice of thresholds poorly understood
– 10%, 20%, 50%, 80%?

– How should it depend on sample size and treatment 
effect

– Inefficient designs result

• Conditional and predictive power do not 
correspond directly to unconditional power

153

Assumed Effect and Threshold

• Probability threshold should take into account 
the timing of the analysis and the presumed 
treatment effect
– It is not uncommon for naïve users to condition on a 

treatment effect that has already been excluded

154

Predictive Power: Example 1

• Sepsis trial to detect difference in 28 day 
survival: Null 0.00 vs Alt -0.07 (90% power)

• Futility bounday at first of 4 analyses
– Futile if observed diff > 0.0473 (so wrong direction)

– Inference at boundary

• Bias adjusted: 0.038 (95% CI -0.037 to 0.101)

155

Predictive Power: Example 1

• MLE: 0.0473   Bias Adj: 0.038 (CI: -0.037, 0.101)

Presumed                        Predictive

True Effect Power

-0.086 71.9%

-0.070 43.2%

-0.037 10.3%

Spons prior 2.8%

Flat prior 0.8%

0.047 <0.005% 156

Predictive Power: Ex 2 (OBF)

• Sepsis trial to detect difference in 28 day 
survival: Null 0.00 vs Alt -0.07 (90% power)

• Futility bounday at first of 4 analyses
– Futile if observed diff > 0.0855 (so wrong direction)

– Inference at boundary

• Bias adjusted: 0.077 (95% CI 0.000 to 0.139)
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Predictive Power: Ex 2 (OBF)

• MLE: 0.0855   Bias Adj: -0.077 (CI: 0.000, 0.139)

Presumed                        Predictive

True Effect Power

-0.086 50.0%

-0.070 26.5%

0.000 .03%

Spons prior 0.3%

Flat prior 0.03%

0.085 <0.005% 158

Key Issues

• Very different probabilities based on 
assumptions about the true treatment effect
– Extremely conservative O’Brien-Fleming boundaries 

correspond to conditional power of 50% (!) under 
alternative rejected by the boundary

– Resolution of apparent paradox: if the alternative 
were true, there is less than .003 probability of 
stopping for futility at the first analysis

159

Stopping Probs for  = -0.07

Group Sequential test

Efficacy               Futility

N=   425       0.009 < - 0.170             >   0.047    0.003

N=   850       0.298 < - 0.085             > - 0.010    0.022

N= 1275       0.401 < - 0.057             > - 0.031    0.039

N= 1700       0.179 < - 0.042             > - 0.042    0.048

Total       0.888 0.112

160

Apples with Apples

• Can compare a group sequential rule to a fixed 
sample test providing
– Same maximal sample size (N= 1700)

– Same (worst case) average sample size (N= 1336)

– Same power under the alternative (N= 1598)

• Consider probability of “discordant decisions”
– Conditional probability (conditional power)

– Unconditional probability (power)

161

Comparable Power for  = -0.07

• Boundaries based on MLE
Group Sequential test

Efficacy              Futility

N=   425                       < - 0.170             >   0.047

N=   850                       < - 0.085             > - 0.010

N= 1275                       < - 0.057             > - 0.031

N= 1700                       < - 0.042             > - 0.042

Fixed Sample Test

N= 1598                       < - 0.043             > - 0.043
162

Stopping Probs for  = -0.07

Group Sequential test

Efficacy             Futility

N=   425       0.009 < - 0.170             >   0.047    0.003

N=   850       0.298 < - 0.085             > - 0.010    0.022

N= 1275       0.401 < - 0.057             > - 0.031    0.039

N= 1700       0.179 < - 0.042             > - 0.042    0.048

Total       0.888 0.112

Fixed Sample Test

N= 1598       0.888 < - 0.043             > - 0.043    0.112
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Cond Prob of Discordance

Group Sequential test

Efficacy           Futility

N=   425       0.002 < - 0.170             >   0.047    0.348

N=   850       0.003 < - 0.085             > - 0.010    0.263

N= 1275       0.009 < - 0.057             > - 0.031    0.172

N= 1700       0.094 < - 0.042             > - 0.042    0.182

Total       0.024 0.197

Fixed Sample Test

N= 1598       < - 0.043             > - 0.043    
164

Uncond Prob of Discordance

Group Sequential test

Efficacy           Futility

N=   425       0.009 < - 0.170             >   0.047    0.001

N=   850       0.001 < - 0.085             > - 0.010    0.006

N= 1275       0.004 < - 0.057             > - 0.031    0.007

N= 1700       0.017 < - 0.042             > - 0.042    0.009

Total       0.022 0.022

Fixed Sample Test

N= 1598       < - 0.043             > - 0.043    

165

Stopping Probs for  = -0.07

Group Sequential test

Efficacy           Futility

N=   425       0.009 < - 0.170             >   0.047    0.003

N=   850       0.298 < - 0.085             > - 0.010    0.022

N= 1275       0.401 < - 0.057             > - 0.031    0.039

N= 1700       0.179 < - 0.042             > - 0.042    0.048

Total       0.888 0.112

Fixed Sample Test

N= 1598       0.888 < - 0.043             > - 0.043    0.112
166

Cond/Uncond Comparison

Group Sequential test

Efficacy                            Futility

Cond Uncond Cond Uncond

N=   425       0.002 0.000                0.348 0.001

N=   850       0.003 0.001                0.263      0.006

N= 1275       0.009 0.004                0.172 0.007

N= 1700       0.094 0.017                0.182 0.009

Total       0.024 0.022                0.197 0.022

167

Ordering of the Outcome Space

• Choosing a threshold based on conditional 
power can lead to nonsensical orderings based 
on unconditional power
– Decisions based on 35% conditional power may be 

more conservative than decisions based on 18% 
conditional power

– Can result in substantial inefficiency (loss of power)

168

Other Comparisons

• In the previous example, the fixed sample 
design had the same power as the GST
– If we instead compare a fixed sample test having 

same worst case ASN, the GST would have greater 
power

– If we compare a fixed sample test having same 
maximal N, the GST has less power
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Further Comments

• Neither conditional power nor predictive power 
have good foundational motivation
– Frequentists should use Neyman-Pearson paradigm 

and consider optimal unconditional power across 
alternatives

• And conditional/predictive power is not a good 
indicator in loss of unconditional power

– Bayesians should use posterior distributions for 
decisions

170

Evaluation of Designs

171

Evaluation of Designs

• Process of choosing a trial design
– Define candidate design

• Usually constrain two operating characteristics
– Type I error, power at design alternative

– Type I error, maximal sample size

– Evaluate other operating characteristics

• Different criteria of interest to different investigators

– Modify design

– Iterate

Collaboration of Disciplines
IssuesCollaboratorsDiscipline

Collection of data 

Study burden

Data integrity

Study coordinators

Data managementOperational

Estimates of treatment effect

Precision of estimates

Safety

Efficacy

Cost effectiveness

Cost of trial / Profitability

Marketing appeal

Individual ethics

Group ethics

Efficacy of treatment

Adverse experiences

Hypothesis generation

Mechanisms

Clinical benefit

BiostatisticiansStatistical

RegulatorsGovernmental

Health services

Sponsor management

Sponsor marketers
Economic

EthicistsEthical

Experts in disease / treatment

Experts in complicationsClinical

Epidemiologists

Basic Scientists

Clinical Scientists
Scientific
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Which Operating Characteristics

• The same regardless of the type of stopping rule 
– Frequentist power curve

• Type I error (null) and power (design alternative)

– Sample size requirements

• Maximum, average, median, other quantiles

• Stopping probabilities

– Inference at study termination (at each boundary)

• Frequentist or Bayesian (under spectrum of priors)

– (Futility measures

• Conditional power, predictive power)
174

At Design Stage

• In particular, at design stage we can know 
– Conditions under which trial will continue at each 

analysis

• Estimates
» (Range of estimates leading to continuation)

• Inference
» (Credibility of results if trial is stopped) 

• Conditional and predictive power

– Tradeoffs between early stopping and loss in 
unconditional power
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Operating Characteristics

• For any stopping rule, however, we can compute 
the correct sampling distribution with specialized 
software
– From the computed sampling distributions we then 

compute

• Bias adjusted estimates

• Correct (adjusted) confidence intervals

• Correct (adjusted) P values

– Candidate designs are then compared with respect to 
their operating characteristics 176

Evaluation: Sample Size

• Number of subjects is a random variable
– Quantify summary measures of sample size 

distribution as a function of treatment effect

• maximum (feasibility of accrual) 

• mean (Average Sample N- ASN) 

• median, quartiles

– Stopping probabilities

• Probability of stopping at each analysis as a 
function of treatment effect

• Probability of each decision at each analysis

(Sponsor)

(Sponsor, DMC)

(Sponsor)

177

Sample Size

• What is the maximal sample size required?
– Planning for trial costs

– Regulatory requirements for minimal N treated

• What is the average sample size required?
– Hopefully low when treatment does not work or is 

harmful

– Acceptable to be high when uncertainty of benefit 
remains

– Hopefully low when treatment is markedly effective

• (But must consider burden of proof)
178

ASN Curve

• Expected sample size as function of true effect

179

Evaluation: Power Curve

• Probability of rejecting null for arbitrary 
alternatives
– Level of significance (power under null)

– Power for specified alternative

– Alternative rejected by design                          

• Alternative for which study has high power
– Interpretation of negative studies

(Scientists)

(Regulatory)

180

Evaluation: Boundaries

• Decision boundary at each analysis: Value of 
test statistic leading to early stopping
– On the scale of estimated treatment effect

• Inform DMC of precision

• Assess ethics
– May have prior belief of unacceptable levels

• Assess clinical importance

– On the Z or fixed sample P value scales

(DMC)

(Marketing)

(DMC, 
Statisticians)

(Often asked 
for, but of 

questionable 
relevance)
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Evaluation: Inference

• Inference on the boundary at each analysis
– Frequentist

• Adjusted point estimates

• Adjusted confidence intervals

• Adjusted P values

– Bayesian

• Posterior mean of parameter distribution

• Credible intervals

• Posterior probability of hypotheses

• Sensitivity to prior distributions

(Scientists,
Statisticians, 
Regulatory)

(Scientists,
Statisticians, 
Regulatory)

182

At Design Stage: Example

• With O’Brien-Fleming boundaries having 90% 
power to detect a 7% absolute decrease in 
mortality
– Maximum sample size of 1700

– Continue past 1275 if crude difference in 28 day 
mortality is between -2.9% and -5.7%

– If we just barely stop for efficacy after 425 patients we 
will report

• Estimated difference in mortality: -16.3%

• 95% confidence interval: -8.7% to -22.4%

• One-sided lower P < 0.0001

183

Evaluation: Futility

• Consider the probability that a different decision 
would result if trial continued
– Compare unconditional power to fixed sample test 

with same sample size

– Conditional power

• Assume specific hypotheses

• Assume current best estimate

– Predictive power

• Assume Bayesian prior distribution

(Scientists,
Sponsor)

(Often asked 
for, but of 

questionable 
relevance)

184

Efficiency / Unconditional Power

• Tradeoffs between early stopping and loss of 
power

• Boundaries                            Loss of Power             Avg Sample Size 

185

Evaluation: Marketable Results

• Probability of obtaining estimates of treatment 
effect with clinical or marketing appeal
– Modified power curve

• Unconditional

• Conditional at each analysis

– Predictive probabilities at each analysis

(Marketing,
Clinicians)

186

Adaptive Sampling Plans
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Sequential Sampling Strategies

• Two broad categories of sequential sampling
– Prespecified stopping guidelines

– Adaptive procedures

188

Adaptive Sampling Plans

• At each interim analysis, possibly modify
– Scientific and statistical hypotheses of interest

– Statistical criteria for credible evidence

– Maximal statistical information

– Randomization ratios

– Schedule of analyses

– Conditions for early stopping

189

Adaptive Sampling: Examples

• Prespecified on the scale of statistical 
information
– E.g., Modify sample size to account for estimated 

information (variance or baseline rates)

• No effect on type I error IF
– Estimated information independent of estimate of 

treatment effect

» Proportional hazards,

» Normal data, and/or

» Carefully phrased alternatives

– And willing to use conditional inference

» Carefully phrased alternatives 190

Estimate Alternative

• If maximal sample size is maintained, the study 
discriminates between null hypothesis and an 
alternative measured in units of statistical 
information
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Estimate Sample Size

• If statistical power is maintained, the study 
sample size is measured in units of statistical 
information 
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Adaptive Sampling: Examples

– E.g., Proschan & Hunsberger (1995)

• Modify ultimate sample size based on conditional 
power

– Computed under current best estimate (if high enough)

• Make adjustment to inference to maintain Type I 
error
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Incremental Statistics

• Statistic at the j-th analysis a weighted average 
of data accrued between analyses
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Conditional Distribution
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Unconditional Distribution
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Two Stage Design

• Proschan & Hunsberger consider worst case
– At first stage, choose sample size of second stage

• N2 = N2(Z1) to maximize type I error

– At second stage, reject if Z2 > a2

• Worst case type I error of two stage design

– Can be more than two times the nominal

• a2 = 1.96 gives type I error of 0.0616

• (Compare to Bonferroni results)
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Better Approaches

• Proschan and Hunsberger describe adaptations 
using restricted procedures to maintain 
experimentwise type I error
– Must prespecify a conditional error function which 

would maintain type I error

• Then find appropriate a2 for second stage based 
on N2 which can be chosen arbitrarily 

– But still have loss of power

198

Motivation for Adaptive Designs

• Scientific and statistical hypotheses of interest
– Modify target population, intervention, measurement 

of outcome, alternative hypotheses of interest

– Possible justification

• Changing conditions in medical environment
– Approval/withdrawal of competing/ancillary treatments

– Diagnostic procedures

• New knowledge from other trials about similar 
treatments

• Evidence from ongoing trial
– Toxicity profile (therapeutic index)

– Subgroup effects
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Motivation for Adaptive Designs

• Modification of other design parameters may 
have great impact on the hypotheses considered
– Statistical criteria for credible evidence

– Maximal statistical information

– Randomization ratios

– Schedule of analyses

– Conditions for early stopping

200

Cost of Planning Not to Plan

• Major issues with use of adaptive designs
– What do we truly gain?

• Can proper evaluation of trial designs obviate 
need?

– What can we lose?

• Efficiency? (and how should it be measured?)

• Scientific inference?
– Science vs Statistics vs Game theory 

– Definition of scientific/statistical hypotheses

– Quantifying precision of inference

201

Prespecified Modification Rules

• Adaptive sampling plans exact a price in 
statistical efficiency
– Tsiatis & Mehta (2002)

• A classic prespecified group sequential stopping 
rule can be found that is more efficient than a 
given adaptive design

– Shi & Emerson (2003)

• Fisher’s test statistic in the self-designing trial 
provides markedly less precise inference than that 
based on the MLE

– To compute the sampling distribution of the latter, the 
sampling plan must be known 202

Conditional/Predictive Power

• Additional issues with maintaining conditional or 
predictive power
– Modification of sample size may allow precise 

knowledge of interim treatment effect

• Interim estimates may cause change in study 
population

– Time trends due to investigators gaining or losing 
enthusiasm

• In extreme cases, potential for unblinding of 
individual patients

– Effect of outliers on test statistics

203

Final Comments

• Adaptive designs versus prespecified stopping 
rules
– Adaptive designs come at a price of efficiency and 

(sometimes) scientific interpretation

– With adequate tools for careful evaluation of designs, 
there is little need for adaptive designs

204

Documentation of Design,
Monitoring, and Analysis 

Plans
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Specify Stopping Rule

• Null, design alternative hypotheses

• One-sided,  two-sided hypotheses 

• Type I error, Power to detect design alternative

• For each boundary
– Hypothesis rejected

– Error

– Boundary scale

– Boundary shape function parameters

• Constraints (minimum, maximum, exact)
206

Documentation of Rule

• Specification of stopping rule

• Estimation of sample size requirements

• Example of stopping boundaries under 
estimated schedule of analyses
– sample mean scale, others?

• Inference at the boundaries

• Power under specific alternatives

• Behavior under possible scenarios
– Alternative baseline rates, variability

207

Implementation

• Method for determining analysis times

• Operating characteristics to be maintained
– Power (up to some maximum N?) 

– Maximal sample size

• Method for measuring study time

• Boundary scale for making decisions

• Boundary scale for constraining boundaries at 
previously conducted analyses

• (Conditions stopping rule might be modified)
208

Analysis Plan

• Stopping rule for inference
– Nonbinding futility?

• Method for determining P values

• Method for point estimation

• Method for confidence intervals

• Handling additional data that accrues after 
decision to stop


